Undecidability and Finite Automata

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10396)

Abstract

Using a novel rewriting problem, we show that several natural decision problems about finite automata are undecidable (i.e., recursively unsolvable). In contrast, we also prove three related problems are decidable. We apply one result to prove the undecidability of a related problem about k-automatic sets of rational numbers.

Keywords

Finite automata Undecidability Conjugate Power 

Notes

Acknowledgments

We thank Hendrik Jan Hoogeboom and the referees for their helpful comments.

References

  1. 1.
    Alur, R., Deshmukh, J.V.: Nondeterministic streaming string transducers. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 1–20. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22012-8_1 CrossRefGoogle Scholar
  2. 2.
    Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase structure grammars. Z. Phonetik. Sprachwiss. Kommuniationsforsch. 14, 143–172 (1961)MathSciNetMATHGoogle Scholar
  3. 3.
    Book, R.V., Otto, F.: String-Rewriting Systems. Springer, New York (1993). doi: 10.1007/978-1-4613-9771-7 CrossRefMATHGoogle Scholar
  4. 4.
    Cobham, A.: Uniform tag sequences. Math. Syst. Theor. 6, 164–192 (1972)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Engelfriet, J., Rozenberg, G.: Fixed point languages, equality languages, and representation of recursively enumerable languages. J. Assoc. Comput. Mach. 27, 499–518 (1980)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ginsburg, S., Rose, G.F.: Some recursively unsolvable problems in ALGOL-like languages. J. Assoc. Comput. Mach. 10, 29–47 (1963)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Hoogeboom, H.J.: Are there undecidable properties of non-turing-complete automata? Posting on stackexchange, 20 October 2012. http://cs.stackexchange.com/questions/1697/are-there-undecidable-properties-of-non-turing-complete-automata
  8. 8.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)MATHGoogle Scholar
  9. 9.
    Lyndon, R.C., Schützenberger, M.P.: The equation \(a^M = b^N c^P\) in a free group. Mich. Math. J. 9, 289–298 (1962)CrossRefMATHGoogle Scholar
  10. 10.
    Post, E.: Absolutely unsolvable problems and relatively undecidable propositions: account of an anticipation. In: Davis, M. (ed.) The Undecidable, pp. 338–433. Raven Press, Hewlett (1965)Google Scholar
  11. 11.
    Rowland, E., Shallit, J.: Automatic sets of rational numbers. Int. J. Found. Comput. Sci. 26, 343–365 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Rozenberg, G., Salomaa, A.: Cornerstones of Undecidability. Prentice-Hall, New York (1994)MATHGoogle Scholar
  13. 13.
    Schaeffer, L., Shallit, J.: The critical exponent is computable for automatic sequences. Int. J. Found. Comput. Sci. 23, 1611–1626 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, Cambridge (2009)MATHGoogle Scholar
  15. 15.
    Shallit, J.O.: Numeration systems, linear recurrences, and regular sets. Inf. Comput. 113, 331–347 (1994)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 42, 230–265 (1936)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations