Advertisement

Undecidability and Finite Automata

  • Jörg Endrullis
  • Jeffrey Shallit
  • Tim Smith
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10396)

Abstract

Using a novel rewriting problem, we show that several natural decision problems about finite automata are undecidable (i.e., recursively unsolvable). In contrast, we also prove three related problems are decidable. We apply one result to prove the undecidability of a related problem about k-automatic sets of rational numbers.

Keywords

Finite automata Undecidability Conjugate Power 

Notes

Acknowledgments

We thank Hendrik Jan Hoogeboom and the referees for their helpful comments.

References

  1. 1.
    Alur, R., Deshmukh, J.V.: Nondeterministic streaming string transducers. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 1–20. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22012-8_1 CrossRefGoogle Scholar
  2. 2.
    Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase structure grammars. Z. Phonetik. Sprachwiss. Kommuniationsforsch. 14, 143–172 (1961)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Book, R.V., Otto, F.: String-Rewriting Systems. Springer, New York (1993). doi: 10.1007/978-1-4613-9771-7 CrossRefzbMATHGoogle Scholar
  4. 4.
    Cobham, A.: Uniform tag sequences. Math. Syst. Theor. 6, 164–192 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Engelfriet, J., Rozenberg, G.: Fixed point languages, equality languages, and representation of recursively enumerable languages. J. Assoc. Comput. Mach. 27, 499–518 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ginsburg, S., Rose, G.F.: Some recursively unsolvable problems in ALGOL-like languages. J. Assoc. Comput. Mach. 10, 29–47 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hoogeboom, H.J.: Are there undecidable properties of non-turing-complete automata? Posting on stackexchange, 20 October 2012. http://cs.stackexchange.com/questions/1697/are-there-undecidable-properties-of-non-turing-complete-automata
  8. 8.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  9. 9.
    Lyndon, R.C., Schützenberger, M.P.: The equation \(a^M = b^N c^P\) in a free group. Mich. Math. J. 9, 289–298 (1962)CrossRefzbMATHGoogle Scholar
  10. 10.
    Post, E.: Absolutely unsolvable problems and relatively undecidable propositions: account of an anticipation. In: Davis, M. (ed.) The Undecidable, pp. 338–433. Raven Press, Hewlett (1965)Google Scholar
  11. 11.
    Rowland, E., Shallit, J.: Automatic sets of rational numbers. Int. J. Found. Comput. Sci. 26, 343–365 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rozenberg, G., Salomaa, A.: Cornerstones of Undecidability. Prentice-Hall, New York (1994)zbMATHGoogle Scholar
  13. 13.
    Schaeffer, L., Shallit, J.: The critical exponent is computable for automatic sequences. Int. J. Found. Comput. Sci. 23, 1611–1626 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  15. 15.
    Shallit, J.O.: Numeration systems, linear recurrences, and regular sets. Inf. Comput. 113, 331–347 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 42, 230–265 (1936)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations