Stable Coronary Artery Disease: Assistance in Complex Percutaneous Coronary Intervention

  • Annapoorna Kini
  • Jagat Narula
  • Yuliya Vengrenyuk
  • Samin Sharma


Optical coherence tomography (OCT) has been increasingly used in clinical practice as a guide during percutaneous coronary intervention (PCI). Prior to stent implantation, OCT can provide accurate measurements of the minimal lumen area, the distal and proximal reference areas, and lesion length. OCT is particularly useful during challenging procedures, such as calcified lesions, bifurcation, and unprotected left main PCI. In calcified lesions, OCT allows measurements of calcification size, thickness and depth and its precise location within the lesion, which might help select an appropriate atheroablation technique. In bifurcation PCI, OCT can help assess main vessel and side branch stenosis before and after stenting, select appropriate treatment strategy, and evaluate the effects of side branch treatment. Three-dimensional OCT reconstruction of bifurcation lesions provides a unique opportunity to assess the true morphology of the main and side vessel. A recent pilot trial demonstrated the safety and feasibility of frequency-domain OCT for unprotected left main PCI. Compared to IVUS, OCT provided a similar assessment of lumen and stent dimensions but was more sensitive in detecting malapposition and edge dissections. Finally, OCT imaging before stenting can provide patient risk stratification for periprocedural myocardial infarction, since OCT-derived thin-cap fibroatheroma and evidence of plaque rupture have been associated with elevation of post-PCI myocardial necrosis markers.


Percutaneous coronary intervention Calcified lesions Bifurcation lesions Rotational and orbital atherectomy Cutting balloon angioplasty Provisional stenting Side branch Periprocedural myocardial infarction Unprotected left main Kissing balloon inflation In-stent restenosis Stent apposition and expansion Edge dissection 

Supplementary material

Video 3.1a

OCT pullback beforerotational atherectomy for a heavily calcified proximal LAD lesion. Part I (AVI 27996 kb)

Video 3.1b

OCT pullback before rotational atherectomy for a heavily calcified proximal LAD lesion. Part II (AVI 31182 kb)

Video 3.2

OCT pullback performed after rotational atherectomy for the LAD lesion (Case 1, Fig. 3.1B2) (AVI 28309 kb)

Video 3.3

Final OCT pullback after stenting (Case 1, Fig. 3.2) (AVI 36781 kb)

Video 3.4

Pre-PCI OCT pullback of a heavily calcified proximal RCA lesion (Case 2, Fig. 3.3, frames B1–B3) (AVI 36952 kb)

Video 3.5

OCT pullback after orbital atherectomy performed in RCA lesion (Case 2, Fig. 3.3, frames B4–B6) (AVI 33631 kb)

Video 3.6

Post-stenting OCT pullback (Case 2, Fig. 3.4) (AVI 42119 kb)

Video 3.7

OCT pullback of in-stent restenosis in the LAD (Case 3, Fig. 3.5) (AVI 42383 kb)

Video 3.8

Post-atherectomy OCT pullback (Case 3, Fig. 3.6) (AVI 30421 kb)

Video 3.9

OCT pullback of LAD-D1 bifurcation lesion (Case 4, Fig. 3.7) (AVI 29942 kb)

Video 3.10

OCT pullback after single stenting followed by kissing balloon inflation (Case 4, Fig. 3.8) (AVI 35184 kb)

Video 3.11

OCT pullback of the LAD after rotational atherectomy (Case 5, Fig. 3.9) (AVI 35288 kb)

Video 3.12

OCT pullback after stenting the main vessel (Case 5, Fig. 3.10) (AVI 35629 kb)

Video 3.13

Final post-PCI OCT pullback after kissing balloon inflation (Case 5, Fig. 3.11) (AVI 31051 kb)

Video 3.14

Preintervention OCT pullback of a mid LAD bifurcation lesion (Case 6, Fig. 3.12) (AVI 30966 kb)

Video 3.15

OCT pullback after V stenting (Case 6, Fig. 3.13) (AVI 34046 kb)

Video 3.16

Preintervention OCT pullback of a calcified LAD-D1 bifurcation (Case 7, Fig. 3.14) (AVI 35757 kb)

Video 3.17

OCT pullback after atherectomy and stenting (Case 7, Fig. 3.15)

Video 3.18

OCT pullback of the left main and proximal LAD before intervention (Case 8, Fig. 3.16) (AVI 39363 kb)

Video 3.19

Pre-PCI OCT pullback of a severely calcified distal left main bifurcation lesion (Case 10, Fig. 3.18) (AVI 35814 kb)

Video 3.20

OCT pullback after atherectomy and stenting (Case 10, Fig. 3.19) (AVI 35034 kb)

Video 3.21

Preintervention OCT pullback of a lipid-rich proximal RCA lesion (Case 10, Fig. 3.20) (AVI 27886 kb)

Video 3.22

Postintervention OCT pullback of the RCA lesion (Case 10, Fig. 3.21) (AVI 27611 kb)


  1. 1.
    Tsuchida K, van der Giessen WJ, Patterson M, Tanimoto S, Garcia-Garcia H, Regar E, et al. In vivo validation of a novel three-dimensional quantitative coronary angiography system (CardiOp-B): comparison with a conventional two-dimensional system (CAAS II) and with special reference to optical coherence tomography. EuroIntervention. 2007;3:100–8.PubMedGoogle Scholar
  2. 2.
    Okamura T, Onuma Y, Garcia-Garcia HM, van Geuns RJ, Wykrzykowska JJ, Schultz C, et al. First-in-man evaluation of intravascular optical frequency domain imaging (OFDI) of Terumo: a comparison with intravascular ultrasound and quantitative coronary angiography. EuroIntervention. 2011;6:1037–45.CrossRefPubMedGoogle Scholar
  3. 3.
    Okamura T, Gonzalo N, Gutierrez-Chico JL, Serruys PW, Bruining N, de Winter S, et al. Reproducibility of coronary Fourier domain optical coherence tomography: quantitative analysis of in vivo stented coronary arteries using three different software packages. EuroIntervention. 2010;6:371–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Fedele S, Biondi-Zoccai G, Kwiatkowski P, Di Vito L, Occhipinti M, Cremonesi A, et al. Reproducibility of coronary optical coherence tomography for lumen and length measurements in humans (The CLI-VAR [Centro per la Lotta contro l’Infarto-VARiability] study). Am J Cardiol. 2012;110:1106–12.CrossRefPubMedGoogle Scholar
  5. 5.
    Sihan K, Botha C, Post F, de Winter S, Gonzalo N, Regar E, et al. Fully automatic three-dimensional quantitative analysis of intracoronary optical coherence tomography: method and Validation. Catheter Cardiovasc Interv. 2009;74:1058–65.CrossRefPubMedGoogle Scholar
  6. 6.
    Tanimoto S, Rodriguez-Granillo G, Barlis P, de Winter S, Bruining N, Hamers R, et al. A novel approach for quantitative analysis of intracoronary optical coherence tomography: high inter-observer agreement with computer-assisted contour detection. Catheter Cardiovasc Interv. 2008;72:228–35.CrossRefPubMedGoogle Scholar
  7. 7.
    Kini AS, Baber U, Kovacic JC, Limaye A, Ali ZA, Sweeny J, et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy: the YELLOW trial (reduction in yellow plaque by aggressive lipid-lowering therapy). J Am Coll Cardiol. 2013;62:21–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Tomey MI, Sharma SK. Interventional options for coronary artery calcification. Curr Cardiol Rep. 2016;18:12.CrossRefPubMedGoogle Scholar
  9. 9.
    Al Suwaidi J, Berger PB, Rihal CS, Garratt KN, Bell MR, Ting HH, et al. Immediate and long-term outcome of intracoronary stent implantation for true bifurcation lesions. J Am Coll Cardiol. 2000;35:929–36.CrossRefPubMedGoogle Scholar
  10. 10.
    Lakovou I, Ge L, Colombo A. Contemporary stent treatment of coronary bifurcations. J Am Coll Cardiol. 2005;46:1446–55.CrossRefGoogle Scholar
  11. 11.
    Maeng M, Holm NR, Erglis A, Kumsars I, Niemelä M, Kervinen K, et al. Long-term results after simple versus complex stenting of coronary artery bifurcation lesions: Nordic Bifurcation Study 5-year follow-up results. J Am Coll Cardiol. 2013;62:30–4.CrossRefPubMedGoogle Scholar
  12. 12.
    Farooq V, Serruys PW, Heo JH, Gogas BD, Okamura T, Gomez-Lara J, et al. New insights into the coronary artery bifurcation hypothesis-generating concepts utilizing 3-dimensional optical frequency domain imaging. JACC Cardiovasc Interv. 2011;4:921–31.CrossRefPubMedGoogle Scholar
  13. 13.
    Kini AS, Yoshimura T, Vengrenyuk Y, Amirian J, Hasan C, Baber U, et al. Plaque morphology predictors of side branch occlusion after main vessel stenting in coronary bifurcation lesions: optical coherence tomography imaging study. JACC Cardiovasc Interv. 2016;9:862–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Kini AS, Vengrenyuk Y, Pena J, Yoshimura T, Panwar SR, Motoyama S, et al. Plaque morphology predictors of side branch occlusion after provisional stenting in coronary bifurcation lesion: results of optical coherence tomography bifurcation study (ORBID). Catheter Cardiovasc Interv. 2017;89(2):259–68. doi: 10.1002/ccd.26524.CrossRefPubMedGoogle Scholar
  15. 15.
    Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360:961–72.CrossRefPubMedGoogle Scholar
  16. 16.
    Alam M, Huang HD, Shahzad SA, Kar B, Virani SS, Rogers PA, et al. Percutaneous coronary intervention vs. coronary artery bypass graft surgery for unprotected left main coronary artery disease in the drug-eluting stents era—an aggregate data meta-analysis of 11,148 patients. Circ J. 2013;77:372–82.CrossRefPubMedGoogle Scholar
  17. 17.
    Fujino Y, Bezerra HG, Attizzani GF, Wang W, Yamamoto H, Chamié D, et al. Frequency-domain optical coherence tomography assessment of unprotected left main coronary artery disease-a comparison with intravascular ultrasound. Catheter Cardiovasc Interv. 2013;82:E173–83.CrossRefPubMedGoogle Scholar
  18. 18.
    Lee T, Yonetsu T, Koura K, Hishikari K, Murai T, Iwai T, et al. Impact of coronary plaque morphology assessed by optical coherence tomography on cardiac troponin elevation in patients with elective stent implantation. Circ Cardiovasc Interv. 2011;4:378–86.CrossRefPubMedGoogle Scholar
  19. 19.
    Porto I, Di Vito L, Burzotta F, Niccoli G, Trani C, Leone AM, et al. Predictors of periprocedural (type IVa) myocardial infarction, as assessed by frequency-domain optical coherence tomography. Circ Cardiovasc Interv. 2012;5:89–96, S1–6.Google Scholar
  20. 20.
    Kini AS, Motoyama S, Vengrenyuk Y, Feig JE, Pena J, Baber U, et al. Multimodality intravascular imaging to predict periprocedural myocardial infarction during percutaneous coronary intervention. JACC Cardiovasc Interv. 2015;8:937–45.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Annapoorna Kini
    • 1
  • Jagat Narula
    • 2
  • Yuliya Vengrenyuk
    • 3
  • Samin Sharma
    • 4
  1. 1.Director, Cardiac Catheterization Laboratory, Director, Structural Heart Intervention Program, Director, Interventional Cardiology Fellowship Program, Zena and Michael A. Wiener Professor of MedicineIcahn School of Medicine at Mount Sinai, Mount Sinai HospitalNew YorkUSA
  2. 2.Director, Intravascular Imaging Core Laboratory, Instructor, Department of MedicineIcahn School of Medicine at Mount Sinai, Mount Sinai HospitalNew YorkUSA
  3. 3.Philip J. and Harriet L. Goodhart Chair in Cardiology, Chief of Cardiology, Mount Sinai St. Luke’s Hospital, Professor of Medicine and Radiology, Associate Dean, Arnhold Institute for Global HealthIcahn School of Medicine at Mount Sinai, Mount Sinai HospitalNew YorkUSA
  4. 4.Director, Clinical and Interventional Cardiology, President, Mount Sinai Heart Network, Dean, International Clinical Affiliations, Anandi Lal Sharma Professor of MedicineIcahn School of Medicine at Mount Sinai, Mount Sinai HospitalNew YorkUSA

Personalised recommendations