Advertisement

Multiscale Simulation of Stochastic Reaction-Diffusion Networks

  • Stefan Engblom
  • Andreas Hellander
  • Per Lötstedt
Chapter

Abstract

The most commonly employed spatial stochastic simulation methods for biochemical systems in molecular systems biology are reviewed from a multiscale perspective. Three levels of approximation are distinguished: macroscopic, mesoscopic, and microscopic levels. The relation between the levels of approximation is discussed for both reactions between molecules and transport of the molecules through a solvent. Computational methods are described for each level separately and for hybrid methods involving two levels. Free software implementing these methods in space and time is surveyed.

2010 Mathematics Subject Classification.

Primary: 65C40; Secondary: 60H35; Tertiary: 92C05 

Notes

Acknowledgements

Generous support has been received from the Swedish Research Council, the eSSENCE strategic collaboration on e-Science, the UPMARC Linnaeus Center of Excellence, and the NIH under grant no. 1R01EB014877-01. The contents are solely the responsibility of the authors and do not necessarily reflect the opinions of these agencies. The authors would also like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme Stochastic Dynamical Systems in Biology: Numerical Methods and Applications where this paper was conceived. This programme was supported by EPSRC grant no EP/K032208/1.

References

  1. 1.
    I.C. Agbanusi, S.A. Isaacson, A comparison of bimolecular reaction models for stochastic reaction diffusion systems. Bull. Math. Biol. 76, 922–946 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    D.F. Anderson, D.J. Higham, Multilevel Monte Carlo for continuous Markov chains, with applications in biochemical kinetics. Multiscale Model. Simul. 10, 146–179 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    D.F. Anderson, G. Craciun, T.G. Kurtz, Product-form stationary distributions for deficiency zero chemical reaction networks. Bull. Math. Biol. 72, 1947–1970 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    S.S. Andrews, D. Bray, Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys. Biol. 1, 137–151 (2004)CrossRefGoogle Scholar
  5. 5.
    S.S. Andrews, N.J. Addy, R. Brent, A.P. Arkin, Detailed simulations of cell biology with Smoldyn 2.1. PLoS Comput. Biol. 6(3), e1000705 (2010)Google Scholar
  6. 6.
    G. Arampatzis, M. Katsoulakis, P. Plecháč, Parallelization, processor communication and error analysis in lattice kinetic Monte Carlo. SIAM J. Numer. Anal. 52(3), 1156–1182 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    K. Ball, T.G. Kurtz, L. Popovic, G. Rempala, Asymptotic analysis of multiscale approximations to reaction networks. Ann. Appl. Probab. 16, 1925–1961 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    E. Barkai, Y. Garini, R. Metzler, Strange kinetics of single molecules in living cells. Phys. Today 65(8), 29–35 (2012)CrossRefGoogle Scholar
  9. 9.
    P. Bauer, J. Lindén, S. Engblom, B. Jonsson, Efficient inter-process synchronization for parallel discrete event simulation on multicores, in Proceedings of the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, SIGSIM PADS ’15, pp. 183–194 (2015)Google Scholar
  10. 10.
    B. Bayati, P. Chatelin, P. Koumoutsakos, Adaptive mesh refinement for stochastic reaction-diffusion processes. J. Comput. Phys. 230, 13–26 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    U.S. Bhalla, Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. Biophys. J. 87, 733–744 (2004)Google Scholar
  12. 12.
    E. Blanc, S. Engblom, A. Hellander, P. Lötstedt, Mesoscopic modeling of reaction-diffusion kinetics in the subdiffusive regime. Multiscale Model. Simul. 14, 668–707 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    J. Brandts, S. Korotov, M. Křížek, J. Šolc, On nonobtuse simplicial partitions. SIAM Rev. 51(2), 317–335 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    K. Burrage, J. Hancock, A. Leier, D.V. Nicolau Jr., Modelling and simulation techniques for membrane biology. Brief. Bioinform. 8(4), 234–244 (2007)CrossRefGoogle Scholar
  15. 15.
    Y. Cao, D.T. Gillespie, L.R. Petzold, The slow-scale stochastic simulation algorithm. J. Chem. Phys. 122, 014116 (2005)CrossRefGoogle Scholar
  16. 16.
    Y. Cao, D. Gillespie, L. Petzold, Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys. 124, 044109 (2006)CrossRefGoogle Scholar
  17. 17.
    A. Chevallier, S. Engblom, Pathwise error bounds in multiscale variable splitting methods for spatial stochastic kinetics. Technical Report arXiv:1607.00805, Uppsala University, Uppsala (2016)Google Scholar
  18. 18.
    A. Crudu, A. Debussche, O. Radulescu, Hybrid stochastic simplifications for multiscale gene networks. BMC Syst. Biol. 3, 89 (2009)CrossRefGoogle Scholar
  19. 19.
    B.J. Daigle, M.K. Roh, L.R. Petzold, J. Niemi, Accelerated maximum likelihood parameter estimation for stochastic biochemical systems. BMC Bioinf. 13(1), 1–18 (2012)CrossRefGoogle Scholar
  20. 20.
    M.H.A. Davies, Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models. J. R. Stat. Soc., Ser. B 46, 358–388 (1984)Google Scholar
  21. 21.
    P. Deuflhard, W. Huisinga, T. Jahnke, M. Wulkow, Adaptive discrete Galerkin methods applied to the chemical master equation. SIAM J. Sci. Comput. 30(6), 2990–3011 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    M. Dobrzyński, J.V. Rodríguez, J.A. Kaandorp, J.G. Blom, Computational methods for diffusion-influenced biochemical reactions. Bioinformatics 23(15), 134–155 (2007)CrossRefGoogle Scholar
  23. 23.
    M. Doi, Stochastic theory of diffusion-controlled reaction. J. Phys. A: Math. Gen. 9(9), 1479–1495 (1976)CrossRefGoogle Scholar
  24. 24.
    A. Donev, V.V. Bulatov, T. Oppelstrup, G.H. Gilmer, B. Sadigh, M.H. Kalos, A First Passage Kinetic Monte Carlo algorithm for complex diffusion–reaction systems. J. Comput. Phys. 229, 3214–3236 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    B. Drawert, M.J. Lawson, L. Petzold, M. Khammash, The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction-diffusion master equation. J. Chem. Phys. 132(7), 074101 (2010)Google Scholar
  26. 26.
    B. Drawert, S. Engblom, A. Hellander, URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries. BMC Syst. Biol. 6, 76 (2012)CrossRefGoogle Scholar
  27. 27.
    A. Duncan, R. Erban, K. Zygalakis, Hybrid framework for the simulation of stochastic chemical kinetics. J. Comput. Phys. 326, 398–419 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    W. E, D. Liu, E. Vanden-Eijnden, Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. J. Comput. Phys. 221, 158–180 (2007)Google Scholar
  29. 29.
    J. Elf, M. Ehrenberg, Fast evaluation of fluctuations in biochemical networks with the linear noise approximation. Genome Res. 13, 2475–2484 (2003)CrossRefGoogle Scholar
  30. 30.
    J. Elf, M. Ehrenberg, Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Syst. Biol. 1, 230–236 (2004)CrossRefGoogle Scholar
  31. 31.
    M.B. Elowitz, A.J. Levine, E.D. Siggia, P.S. Swain, Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)CrossRefGoogle Scholar
  32. 32.
    Y. Elskens, Microscopic derivation of a Markovian master equation in a deterministic model of chemical reaction. J. Stat. Phys. 37(5–6), 673–695 (1984)MathSciNetCrossRefGoogle Scholar
  33. 33.
    S. Engblom, Computing the moments of high dimensional solutions of the master equation. Appl. Math. Comput. 180(2), 498–515 (2006)MathSciNetzbMATHGoogle Scholar
  34. 34.
    S. Engblom, Numerical Solution Methods in Stochastic Chemical Kinetics. PhD thesis, Uppsala University (2008)Google Scholar
  35. 35.
    S. Engblom, Spectral approximation of solutions to the chemical master equation. J. Comput. Appl. Math. 229(1), 208–221 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    S. Engblom, Parallel in time simulation of multiscale stochastic chemical kinetics. Multiscale Model. Simul. 8(1), 46–68 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    S. Engblom, Strong convergence for split-step methods in stochastic jump kinetics. SIAM J. Numer. Anal. 53(6), 2655–2676 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    S. Engblom, L. Ferm, A. Hellander, P. Lötstedt, Simulation of stochastic reaction-diffusion processes on unstructured meshes. SIAM J. Sci. Comput. 31, 1774–1797 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    R. Erban, J. Chapman, Stochastic modelling of reaction-diffusion processes: algorithms for bimolecular reactions. Phys. Biol. 6, 046001 (2009)CrossRefGoogle Scholar
  40. 40.
    R. Erban, J. Chapman, P.K. Maini, A practical guide to stochastic simulations of reaction-diffusion processes. Technical report, Mathematical Institute, University of Oxford, Oxford (2007). http://arxiv.org/abs/0704.1908 Google Scholar
  41. 41.
    H. Erten, A. Üngör, Quality triangulations with locally optimal Steiner points. SIAM J. Sci. Comput. 31, 2103–2130 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    D. Fange, J. Elf, Noise-induced min phenotypes in E. coli. PLoS Comput. Biol. 2, 637–648 (2006)Google Scholar
  43. 43.
    D. Fange, O.G. Berg, P. Sjöberg, J. Elf, Stochastic reaction-diffusion kinetics in the microscopic limit. Proc. Natl. Acad. Sci. U. S. A. 107(46), 19820–19825 (2010)zbMATHCrossRefGoogle Scholar
  44. 44.
    M. Feinberg, The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ration. Mech. Anal. 132, 311–370 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    L. Ferm, P. Lötstedt, A. Hellander, A hierarchy of approximations of the master equation scaled by a size parameter. J. Sci. Comput. 34, 127–151 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    L. Ferm, A. Hellander, P. Lötstedt, An adaptive algorithm for simulation of stochastic reaction-diffusion processes. J. Comput. Phys. 229, 343–360 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    M.B. Flegg, S.J. Chapman, R. Erban, The two-regime method for optimizing stochastic reaction-diffusion simulations. J. R. Soc. Interface 9, 859–868 (2012)CrossRefGoogle Scholar
  48. 48.
    M.B. Flegg, S. Hellander, R. Erban, Convergence of methods for coupling of microscopic and mesoscopic reaction–diffusion simulations. J. Comput. Phys. 289, 1–17 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    B. Franz, M. Flegg, S.J. Chapman, R. Erban, Multiscale reaction-diffusion algorithms: PDE-assisted Brownian dynamics. SIAM J. Appl. Math. 73, 1224–1247 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    F. Fröhlich, P. Thomas, A. Kazeroonian, F.J. Thies, R. Grima, J. Hasenauer, Inference for stochastic chemical kinetics using moment equations and systems size expansion. PLoS Comput. Biol. 12, e1005030 (2016)CrossRefGoogle Scholar
  51. 51.
    C. Gadgil, C.-H.- Lee, H.G. Othmer, A stochastic analysis of first-order reaction networks. Bull. Math. Biol. 67, 901–946 (2005)Google Scholar
  52. 52.
    A. Ganguly, D. Altintan, H. Koeppl, Jump-diffusion approximation of stochastic reaction dynamics: Error bounds and algorithms. Multiscale Model. Simul. 13, 1390–1419 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    C.W. Gardiner, Handbook of Stochastic Methods. Springer Series in Synergetics, 3rd edn. (Springer, Berlin 2004)Google Scholar
  54. 54.
    C.W. Gardiner, K.J. McNeil, D.F. Walls, I.S. Matheson, Correlations in stochastic theories of chemical reactions. J. Stat. Phys. 14(4), 307–331 (1976)CrossRefGoogle Scholar
  55. 55.
    M.A. Gibson, J. Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. 104(9), 1876–1889 (2000)CrossRefGoogle Scholar
  56. 56.
    D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  57. 57.
    D.T. Gillespie, A rigorous derivation of the chemical master equation. Physica A 188, 404–425 (1992)CrossRefGoogle Scholar
  58. 58.
    D.T. Gillespie, Markov Processes: An introduction for Physical Scientists (Academic, San Diego, CA, 1992)zbMATHGoogle Scholar
  59. 59.
    D.T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716–1733 (2001)CrossRefGoogle Scholar
  60. 60.
    D.T. Gillespie, A diffusional bimolecular propensity function. J. Chem. Phys. 131(16), 164109 (2009)Google Scholar
  61. 61.
    D.T. Gillespie, E. Seitaridou, Simple Brownian Diffusion (Oxford University Press, Oxford, 2013)zbMATHGoogle Scholar
  62. 62.
    D.T. Gillespie, A. Hellander, L.R. Petzold, Perspective: stochastic algorithms for chemical kinetics. J. Chem. Phys. 138, 170901 (2013)CrossRefGoogle Scholar
  63. 63.
    J. Goutsias, G. Jenkinson, Markovian dynamics on complex reaction networks. Phys. Rep. 529, 199–264 (2013)MathSciNetCrossRefGoogle Scholar
  64. 64.
    R. Grima, A study of the moment-closure approximations for stochastic chemical kinetics. J. Chem. Phys. 136, 154105 (2012)CrossRefGoogle Scholar
  65. 65.
    R. Grima, Linear-noise approximation and the chemical master equation agree up to second-order moments for a class of chemical systems. Phys. Rev. E 92, 042124 (2015)MathSciNetCrossRefGoogle Scholar
  66. 66.
    P. Hammar, P. Leroy, A. Mahmutovic, E.G. Marklund, O.G. Berg, J. Elf, The lac repressor displays facilitated diffusion in living cells. Science 336, 1595–1598 (2012)CrossRefGoogle Scholar
  67. 67.
    E.L. Haseltine, J.B. Rawlings, Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117(15), 6959–6969 (2002)CrossRefGoogle Scholar
  68. 68.
    J. Hattne, D. Fange, J. Elf, Stochastic reaction-diffusion simulation with MesoRD. Bioinformatics 21, 2923–2924 (2005)CrossRefGoogle Scholar
  69. 69.
    M. Hegland, C. Burden, L. Santoso, S. MacNamara, H. Booth, A solver for the stochastic master equation applied to gene regulatory networks. J. Comput. Appl. Math. 205(2), 708–724 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    A. Hellander, P. Lötstedt, Incorporating active transport of cellular cargo in stochastic mesoscopic models of living cells. Multiscale Model. Simul. 8(5), 1691–1714 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    S. Hellander, P. Lötstedt, Flexible single molecule simulation of reaction-diffusion processes. J. Comput. Phys. 230, 3948–3965 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    S. Hellander, L. Petzold, Reaction rates for a generalized reaction-diffusion master equation. Phys. Rev. E 93, 013307 (2016)CrossRefGoogle Scholar
  73. 73.
    A. Hellander, S. Hellander, P. Lötstedt, Coupled mesoscopic and microscopic simulation of stochastic reaction-diffusion processes in mixed dimensions. Multiscale Model. Simul. 10(2), 585–611 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    S. Hellander, A. Hellander, L. Petzold, Reaction-diffusion master equation in the microscopic limit. Phys. Rev. E 85, 042901 (2012)CrossRefGoogle Scholar
  75. 75.
    S. Hellander, A. Hellander, L. Petzold, Reaction rates for mesoscopic reaction-diffusion kinetics. Phys. Rev. E 91, 023312 (2015)MathSciNetCrossRefGoogle Scholar
  76. 76.
    B.J. Henry, T.A.M. Langlands, S.L. Wearne, Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations. Phys. Rev. E 74, 031116 (2006)MathSciNetCrossRefGoogle Scholar
  77. 77.
    I. Hepburn, W. Chen, S. Wils, E.D. Schutter, STEPS: efficient simulation of stochastic reaction-diffusion models in realistic morphologies. BMC Syst. Biol. 6, 36 (2012)CrossRefGoogle Scholar
  78. 78.
    B. Hepp, A. Gupta, M. Khammash, Adaptive hybrid simulations for multiscale stochastic reaction networks. J. Chem. Phys. 142(3), 034118 (2015)Google Scholar
  79. 79.
    F. Höfling, T. Franosch, Anomalous transport in the crowded world of biological cells. Rep. Progr. Phys. 76, 046602 (2013)MathSciNetCrossRefGoogle Scholar
  80. 80.
    J.D. Humphrey, E.R. Dufresne, M.A. Schwartz, Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15(12), 802–812 (2014)CrossRefGoogle Scholar
  81. 81.
    S.A. Isaacson, The reaction-diffusion master equation as an asymptotic approximation of diffusion to a small target. SIAM J. Appl. Math. 70, 77–111 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    S.A. Isaacson, A convergent reaction-diffusion master equation. J. Chem. Phys. 139, 054101 (2013)CrossRefGoogle Scholar
  83. 83.
    S.A. Isaacson, C.S. Peskin, Incorporating diffusion in complex geometries into stochastic chemical kinetics simulations. SIAM J. Sci. Comput. 28(1), 47–74 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    T. Jahnke, An adaptive wavelet method for the chemical master equation. SIAM J. Sci. Comput. 31(6), 4373–4394 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    T. Jahnke, W. Huisinga, Solving the chemical master equation for monomolecular reaction systems analytically. J. Math. Biol. 54(1), 1–26 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    T. Jahnke, M. Krein, Error bound for piecewise deterministic processes modeling stochastic reaction systems. Multiscale Model. Simul. 10, 1119–1147 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    H.-W. Kang, T.G. Kurtz, Separation of time-scales and model reduction for stochastic reaction networks. Ann. Appl. Probab. 23, 529–583 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    J.R. Karr, J.C. Sanghvi, D.N. Macklin, M.V. Gutschow, J.M. Jacobs, B. Bolival Jr., N. Assad-Garcia, J.I. Glass, M.W. Covert, A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012)CrossRefGoogle Scholar
  89. 89.
    V. Kazeev, M. Khammash, M. Nip, C. Schwab, Direct solution of the chemical master equation using quantized tensor trains. PLoS Comput. Biol. 10(4), e1003359 (2014)Google Scholar
  90. 90.
    R.A. Kerr, T.M. Bartol, B. Kaminsky, M. Dittrich, J.-C.J. Chang, S.B. Baden, T.J. Sejnowski, J.R. Stiles, Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces. SIAM J. Sci. Comput. 30(6), 3126–3149 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    D.J. Kiviet, P. Nghe, N. Walker, S. Boulineau, V. Sunderlikova, S.J. Tans, Stochasticity of metabolism and growth at the single-cell level. Nature 514, 376–379 (2014)CrossRefGoogle Scholar
  92. 92.
    M. Klann, A. Ganguly, H. Koeppl, Hybrid spatial Gillespie and particle tracking simulation. Bioinformatics 28, i549–i555 (2012)CrossRefGoogle Scholar
  93. 93.
    M. Komorowski, M.J. Costa, D.A. Rand, M.P.H. Stumpf, Sensitivity, robustness, and identifiability in stochastic chemical kinetics models. Proc. Natl. Acad. Sci. U. S. A. 108(21), 8645–8650 (2011)CrossRefGoogle Scholar
  94. 94.
    S. Korotov, M. Křížek, P. Neittanmäki, Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. Math. Comp. 70, 107–119 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  95. 95.
    T.G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Prob. 7, 49–58 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  96. 96.
    T.G. Kurtz, Strong approximation theorems for density dependent Markov chains. Stoch. Proc. Appl. 6, 223–240 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    C. Lemerle, B.D. Ventura, L. Serrano, Space as the final frontier in stochastic simulations of biological systems. FEBS Lett. 579, 1789–1794 (2005)CrossRefGoogle Scholar
  98. 98.
    S. Liao, T. Vejchodsky, R. Erban, Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks. J. R. Soc. Interface 12, 20150233 (2015)CrossRefGoogle Scholar
  99. 99.
    G. Lillacci, M. Khammash, The signal within the noise: efficient inference of stochastic gene regulation models using fluorescence histograms and stochastic simulations. Bioinformatics 29(18), 2311–2319 (2013)CrossRefGoogle Scholar
  100. 100.
    J. Lipková, K.C. Zygalakis, S.J. Chapman, R. Erban, Analysis of Brownian dynamics simulations of reversible bimolecular reactions. SIAM J. Appl. Math. 71(3), 714–730 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  101. 101.
    C.F. Lopez, J.L. Muhlich, J.A. Bachman, P.K. Sorger, Programming biological models in python using PySB. Mol. Syst. Biol. 9(1), 646 (2013)Google Scholar
  102. 102.
    P. Lötstedt, L. Meinecke, Simulation of stochastic diffusion via first exit times. J. Comput. Phys. 300, 862–886 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    A. Mahmutovic, D. Fange, O.G. Berg, J. Elf, Lost in presumption: stochastic reactions in spatial models. Nat. Methods 9(12), 1–4 (2012)CrossRefGoogle Scholar
  104. 104.
    T.T. Marquez-Lago, A. Leier, K. Burrage, Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology. IET Syst. Biol. 6(4), 134–142 (2012)CrossRefGoogle Scholar
  105. 105.
    H.H. McAdams, A. Arkin, Stochastic mechanisms in gene expression. Proc. Natl. Acad. Sci. U. S. A. 94, 814–819 (1997)CrossRefGoogle Scholar
  106. 106.
    D.A. McQuarrie, Stochastic approach to chemical kinetics. J. Appl. Prob. 4, 413–478 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    L. Meinecke, S. Engblom, A. Hellander, P. Lötstedt, Analysis and design of jump coefficients in discrete stochastic diffusion models. SIAM J. Sci. Comput. 38, A55–A83 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    R. Metzler, The future is noisy: the role of spatial fluctuations in genetic switching. Phys. Rev. Lett. 87, 068103 (2001)CrossRefGoogle Scholar
  109. 109.
    R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    A. Milias-Argeitis, S. Engblom, P. Bauer, M. Khammash, Stochastic focusing coupled with negative feedback enables robust regulation in biochemical reaction networks. J. R. Soc. Interface 12(113), 1–10 (2015)CrossRefGoogle Scholar
  111. 111.
    M.S. Mommer, D. Lebiedz, Modeling subdiffusion using reaction diffusion systems. SIAM J. Appl. Math. 70(1), 112–132 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    A. Moraes, R. Tempone, P. Vilanova, Hybrid Chernoff tau-leap. Multiscale Model. Simul. 12(2), 581–615 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    A. Moraes, R. Tempone, P. Vilanova, A multilevel adaptive reaction-splitting simulation method for stochastic reaction networks. SIAM J. Sci. Comput. 38(4), A2091–A2117 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    B. Munsky, M. Khammash, The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124(4), 044104 (2006)Google Scholar
  115. 115.
    B. Munsky, G. Neuert, A. van Oudenaarden, Using gene expression noise to understand gene regulation. Science 336(6078), 183–187 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    D.V. Nicolau Jr., J.F. Hancock, K. Burrage, Sources of anomalous diffusion on cell membranes: a Monte Carlo study. Biophys. J. 92, 1975–1987 (2007)CrossRefGoogle Scholar
  117. 117.
    T. Oppelstrup, V.V. Bulatov, A. Donev, M.H. Kalos, G.H. Gilmer, B. Sadigh, First-passage kinetic Monte Carlo method. Phys. Rev. E 80, 066701 (2009)zbMATHCrossRefGoogle Scholar
  118. 118.
    J. Pahle, Biochemical simulations: stochastic, approximate stochastic and hybrid approaches. Brief. Bioinform. 10, 53–64 (2009)CrossRefGoogle Scholar
  119. 119.
    J. Paulsson, Summing up the noise in gene networks. Nature 427, 415–418 (2004)CrossRefGoogle Scholar
  120. 120.
    F. Persson, M. Lindén, C. Unosson, J. Elf, Extracting intracellular diffusive states and transition rates from single-molecule tracking data. Nat. Methods 10, 265–269 (2013)CrossRefGoogle Scholar
  121. 121.
    A. Raj, A. van Oudenaarden, Nature, nurture, or chance: Stochastic gene expression and its consequences. Cell 135(2), 216–226 (2008)CrossRefGoogle Scholar
  122. 122.
    M. Rathinam, L.R. Petzold, Y. Cao, D. Gillespie, Consistency and stability of tau-leaping schemes for chemical reaction systems. Multiscale Model. Simul. 4, 867–895 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  123. 123.
    M. Robinson, M. Flegg, R. Erban, Adaptive two-regime method: application to front propagation. J. Chem. Phys. 140, 124109 (2014)CrossRefGoogle Scholar
  124. 124.
    M. Robinson, S.S. Andrews, R. Erban, Multiscale reaction-diffusion simulations with Smoldyn. Bioinformatics 31(14), 2406–2408 (2015)CrossRefGoogle Scholar
  125. 125.
    J. Ruess, A. Milias-Argeitis, J. Lygeros, Designing experiments to understand the variability in biochemical reaction networks. J. R. Soc. Interface 10(88) (2013)Google Scholar
  126. 126.
    J. Ruess, F. Parise, A. Milias-Argeitis, M. Khammash, J. Lygeros, Iterative experiment design guides the characterization of a light-inducible gene expression circuit. Proc. Natl. Acad. Sci. U. S. A. 112(26), 8148–8153 (2015)CrossRefGoogle Scholar
  127. 127.
    H. Salis, Y. Kaznessis, Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys. 122, 054103 (2005)CrossRefGoogle Scholar
  128. 128.
    M.J. Saxton, A biological interpretation of transient anomalous subdiffusion. I. Qualitative model. Biophys. J. 92, 1178–1191 (2007)Google Scholar
  129. 129.
    D. Schnoerr, G. Sanguinetti, R. Grima, Approximation and inference methods for stochastic biochemical kinetics - a tutorial review. Technical report, University of Edinburgh, Edinburgh (2016). http://arxiv.org/abs/1608.06582 zbMATHGoogle Scholar
  130. 130.
    J. Schöneberg, A. Ullrich, F. Noé, Simulation tools for particle-based reaction-diffusion dynamics in continuous space. BMC Biophysics 7, 11 (2014)CrossRefGoogle Scholar
  131. 131.
    B. Sportisse, An analysis of operator splitting techniques in the stiff case. J. Comput. Phys. 161, 140–168 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  132. 132.
    G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  133. 133.
    A.B. Stundzia, C.L. Lumsden, Stochastic simulation of coupled reaction-diffusion processes. J. Comput. Phys. 127, 196–207 (1996)zbMATHCrossRefGoogle Scholar
  134. 134.
    M. Sturrock, A.J. Terry, D.P. Xirodimas, A.M. Thompson, M.A. Chaplain, Influence of the nuclear membrane, active transport, and cell shape on the Hes1 and p53-Mdm2 pathways: insights from spatio-temporal modelling. Bull. Math. Biol. 74, 1531–1579 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  135. 135.
    K. Takahashi, S.N.V. Arjunan, M. Tomita, Space in systems biology of signaling pathways–towards intracellular molecular crowding in silico. FEBS Lett. 579, 1782–1788 (2005)Google Scholar
  136. 136.
    K. Takahashi, S. Tănase-Nicola, P.R. ten Wolde, Spatio-temporal correlations can drastically change the response of a MAPK pathway. Proc. Natl. Acad. Sci. U. S. A. 107(6), 2473–2478 (2010)CrossRefGoogle Scholar
  137. 137.
    P.R. Taylor, R.E. Baker, M.J. Simpson, C.A. Yates, Coupling volume-excluding compartment-based models of diffusion at different scales: voronoi and pseudo-compartment approaches. J. R. Soc. Interface 13(120), 20160336 (2016)Google Scholar
  138. 138.
    M. Thattai, A. van Oudenaarden, Intrinsic noise in gene regulatory networks. Proc. Nat. Acad. Sci. U. S. A. 98, 8614–8619 (2001)CrossRefGoogle Scholar
  139. 139.
    V. Thomée, Galerkin Finite Element Methods for Parabolic Problems (Springer, Berlin, 1997)zbMATHCrossRefGoogle Scholar
  140. 140.
    T. Tian, K. Burrage, Binomial leap methods for simulating stochastic chemical kinetics. J. Chem. Phys. 121, 10356–10364 (2004)CrossRefGoogle Scholar
  141. 141.
    M. Tomita. Whole-cell simulation: a grand challenge for the 21st century. Trends Biotechnol. 19(6), 205–210 (2001)MathSciNetCrossRefGoogle Scholar
  142. 142.
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry, 5th edn. (Elsevier, Amsterdam, 2004)zbMATHGoogle Scholar
  143. 143.
    J.S. van Zon, P.R. ten Wolde, Green’s-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space. J. Chem. Phys. 123, 234910 (2005)CrossRefGoogle Scholar
  144. 144.
    M. von Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92, 129–168 (1917)Google Scholar
  145. 145.
    M. Vigelius, B. Meyer, Multi-dimensional, mesoscopic Monte Carlo simulations of inhomogeneous reaction-drift-diffusion systems on graphics-processing units. PLoS One 7(4), 1–13 (2012)CrossRefGoogle Scholar
  146. 146.
    J.M.G. Vilar, H.Y. Kueh, N. Barkai, S. Leibler, Mechanism of noise-resistance in genetic oscillators. Proc. Nat. Acad. Sci. 99, 5988–5992 (2002)CrossRefGoogle Scholar
  147. 147.
    M. Watabe, S.N.V. Arjunan, S. Fukushima, K. Iwamoto, J. Kozuka, S. Matsuoka, Y. Shindo, M. Ueda, K. Takahashi, A computational framework for bioimaging simulation. PLoS One 10(7), 1–19 (2015)CrossRefGoogle Scholar
  148. 148.
    C. Zechner, J. Ruess, P. Krenn, S. Pelet, M. Peter, J. Lygeros, H. Koeppl, Moment-based inference predicts bimodality in transient gene expression. Proc. Natl. Acad. Sci. U. S. A. 109(21), 8340–8345 (2012)CrossRefGoogle Scholar
  149. 149.
    C. Zechner, M. Unger, S. Pelet, M. Peter, H. Koeppl, Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings. Nat. Methods 11, 197–202 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Stefan Engblom
    • 1
  • Andreas Hellander
    • 1
  • Per Lötstedt
    • 1
  1. 1.Division of Scientific Computing, Department of Information TechnologyUppsala University05 UppsalaSweden

Personalised recommendations