Test Models for Statistical Inference: Two-Dimensional Reaction Systems Displaying Limit Cycle Bifurcations and Bistability

  • Tomislav Plesa
  • Tomáš Vejchodský
  • Radek Erban


Theoretical results regarding two-dimensional ordinary-differential equations (ODEs) with second-degree polynomial right-hand sides are summarized, with an emphasis on limit cycles, limit cycle bifurcations, and multistability. The results are then used for construction of two reaction systems, which are at the deterministic level described by two-dimensional third-degree kinetic ODEs. The first system displays a homoclinic bifurcation, and a coexistence of a stable critical point and a stable limit cycle in the phase plane. The second system displays a multiple limit cycle bifurcation, and a coexistence of two stable limit cycles. The deterministic solutions (obtained by solving the kinetic ODEs) and stochastic solutions [noisy time-series generating by the Gillespie algorithm, and the underlying probability distributions obtained by solving the chemical master equation (CME)] of the constructed systems are compared, and the observed differences highlighted. The constructed systems are proposed as test problems for statistical methods, which are designed to detect and classify properties of given noisy time-series arising from biological applications.



The authors would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme “Stochastic Dynamical Systems in Biology: Numerical Methods and Applications” where work on this paper was undertaken. This work was supported by EPSRC grant no EP/K032208/1. This work was partially supported by a grant from the Simons Foundation. Tomáš Vejchodský would like to acknowledge the institutional support RVO 67985840. Radek Erban would also like to thank the Royal Society for a University Research Fellowship.


  1. 1.
    M. Pineda-Krch, H.J. Blok, U. Dieckmann, M. Doebeli, A tale of two cycles – distinguishing quasi-cycles and limit cycles in finite predator-prey populations. Oikos 116(1), 53–64 (2007)CrossRefGoogle Scholar
  2. 2.
    T. Plesa, T. Vejchodský, R. Erban, Chemical reaction systems with a homoclinic bifurcation: an inverse problem. J. Math. Chem. 54(10), 1884–1915 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    P. Érdi, J. Tóth, Mathematical Models of Chemical Reactions. Theory and Applications of Deterministic and Stochastic Models (Manchester University Press/Princeton University Press, Princeton, 1989)Google Scholar
  4. 4.
    D.L.K. Toner, R. Grima, Molecular noise induces concentration oscillations in chemical systems with stable node steady states. J. Chem. Phys. 138, 055101 (2013)CrossRefGoogle Scholar
  5. 5.
    S. Louca, M. Doebeli, Distinguishing intrinsic limit cycles from forced oscillations in ecological time series. Theor. Ecol. 7(4), 381–390 (2014)CrossRefGoogle Scholar
  6. 6.
    R. Erban, S.J. Chapman, I. Kevrekidis, T. Vejchodský, Analysis of a stochastic chemical system close to a SNIPER bifurcation of its mean-field model. SIAM J. Appl. Math. 70(3), 984–1016 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    S. Liao, T. Vejchodský, R. Erban, Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks. J. R. Soc. Interface 12(108), 20150233 (2015)Google Scholar
  8. 8.
    P. Thomas, A.V. Straube, J. Timmer, C. Fleck, R. Grima, Signatures of nonlinearity in single cell noise-induced oscillations. J. Theor. Biol. 335, 222–234 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    W. Vance, J. Ross, Fluctuations near limit cycles in chemical reaction systems. J. Chem. Phys. 105, 479–487 (1996)CrossRefGoogle Scholar
  10. 10.
    R.P. Boland, T. Galla, A.J. McKane, How limit cycles and quasi-cycles are related in systems with intrinsic noise. J. Stat. Mech. Theory Exp. 2008, P09001, 1–27 (2008)Google Scholar
  11. 11.
    T. Xiao, J. Ma, Z. Hou, H. Xin, Effects of internal noise in mesoscopic chemical systems near Hopf bifurcation. New J. Phys. 9, 403 (2007)CrossRefGoogle Scholar
  12. 12.
    M.T. Borisuk, J.J. Tyson, Bifurcation analysis of a model of mitotic control in frog eggs. J. Theor. Biol. 195, 69–85 (1998)CrossRefGoogle Scholar
  13. 13.
    M.Y. Li, H. Shu, Multiple stable periodic oscillations in a mathematical model of CTL response to HTLV-I infection. Bull. Math. Biol. 73, 1774–1793 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    A. Amiranashvili, N.D. Schnellbächer, U.S. Schwarz, Stochastic switching between multistable oscillation patterns of the Min-system. New J. Phys. 18, 093049 (2016)CrossRefGoogle Scholar
  15. 15.
    F. Schlögl, Chemical reaction models for nonequilibrium phase transition. Z. Physik. 253(2), 147–161 (1972)MathSciNetCrossRefGoogle Scholar
  16. 16.
    V.A. Gaiko, Global Bifurcation Theory and Hilbert’s Sixteenth Problem (Springer Science, New York, 2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    V.A. Gaiko, On the geometry of polynomial dynamical systems. J. Math. Sci. 157(3), 400–412 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    L.M. Perko, Limit cycles of quadratic systems in the plane. Rocky Mt. J. Math. 14(3), 619–645 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    L.A. Cherkas, J.C. Artés, J. Llibre, Quadratic systems with limit cycles of normal size. Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica 1(41), 31–46 (2003)Google Scholar
  20. 20.
    J.C. Artés, J. Llibre, Quadratic vector fields with a weak focus of third order. Publ. Math. 41, 7–39 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    C. Escher, Bifurcation and coexistence of several limit cycles in models of open two-variable quadratic mass-action systems. Chem. Phys. 63, 337–348 (1981)MathSciNetCrossRefGoogle Scholar
  22. 22.
    L.M. Perko, Differential Equations and Dynamical Systems, 3rd edn. (Springer, New York, 2001)CrossRefzbMATHGoogle Scholar
  23. 23.
    A.K. Dutt, Asymptotically stable limit cycles in a model of glycolytic oscillations. Chem. Phys. Lett. 208, 139–142 (1992)CrossRefGoogle Scholar
  24. 24.
    S. Kar, W.T. Baumann, M.R. Paul, J.J. Tyson, Exploring the roles of noise in the eukaryotic cell cycle. Proc. Natl. Acad. Sci. U. S. A. 106, 6471–6476 (2009)CrossRefGoogle Scholar
  25. 25.
    J.M.G. Vilar, H.Y. Kueh, N. Barkai, S. Leibler, Mechanisms of noise-resistance in genetic oscillators. Proc. Natl. Acad. Sci. U. S. A. 99(9), 5988–5992 (2002)CrossRefGoogle Scholar
  26. 26.
    Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edn. (Springer, New York, 2000)Google Scholar
  27. 27.
    M.S. Ghomi, A. Ciliberto, S. Kar, B. Novak, J.J. Tyson, Antagonism and bistability in protein interaction networks. J. Theor. Biol. 218, 209–218 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Y. Dublanche, K. Michalodimitrakis, N. Kummerer, M. Foglierini, L. Serrano, Noise in transcription negative feedback loops: simulation and experimental analysis. Mol. Syst. Biol. 2(41), E1–E12 (2006)Google Scholar
  29. 29.
    N. Bautin, On the number of limit cycles which appear with a variation of coefficients from an equilibrium position of focus or center type. Am. Math. Soc. Transl. 100, 3–19 (1954)MathSciNetGoogle Scholar
  30. 30.
    M. Han, H. Zhu, The loop quantities and bifurcations of homoclinic loops. J. Diff. Equ. 234, 339–359 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    W. Coppel, A survey of quadratic systems. J. Diff. Equ. 2, 293–304 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    C. Chicone, T. Jinghuang, On general properties of quadratic systems. Am. Math. Mon. 89, 167–178 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    C. Escher, Double Hopf-bifurcation in plane quadratic mass-action systems. Chem. Phys. 67, 239–244 (1982)MathSciNetCrossRefGoogle Scholar
  34. 34.
    C. Escher, Models of chemical reaction systems with exactly evaluable limit cycle oscillations. Z. Phys. B 35, 351–361 (1979)MathSciNetCrossRefGoogle Scholar
  35. 35.
    G.M. Guidi, A. Goldbeter, Bistability without hysteresis in chemical reaction systems: a theoretical analysis of irreversible transitions between multiple steady states. J. Phys. Chem. 101, 9367–9376 (1997)CrossRefGoogle Scholar
  36. 36.
    G.M. Guidi, A. Goldbeter, Bistability without hysteresis in chemical reaction systems: the case of nonconnected branches of coexisting steady states. J. Phys. Chem. 102, 7813–7820 (1998)CrossRefGoogle Scholar
  37. 37.
    J. Tóth, Multistationarity is neither necessary nor sufficient to oscillations. J. Math. Chem. 25, 393–397 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    R.J. Dickson, L.M. Perko, Bounded quadratic systems in the plane. J. Diff. Equ. 7, 251–273 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    G.D.F. Duff, Limit cycles and rotated vector fields. Ann. Math. 67, 15–31 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    C.-C. Tung, Positions of limit cycles of the system dx∕dt = ∑a ik x i y k, dy∕dt = ∑b ik x i y k, 0 ≤ i + k ≤ 2. Sci. Sin. 8, 151–171 (1959)Google Scholar
  41. 41.
    M. Feinberg, Lectures on Chemical Reaction Networks (Delivered at the Mathematics Research Center, University of Wisconsin, Madison, 1979).Google Scholar
  42. 42.
    N.G. Van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Burlington, 2007)zbMATHGoogle Scholar
  43. 43.
    R. Erban, S.J. Chapman, P. Maini, A Practical Guide to Stochastic Simulations of Reaction-Diffusion Processes. Lecture Notes (2007). Available as
  44. 44.
    T. Plesa, K. Zygalakis, D.F. Anderson, R. Erban, Noise Control for DNA Computing (2017, submitted).
  45. 45.
    M. Vellela, H. Qian, A quasistationary analysis of a stochastic chemical reaction: Keizer’s paradox. Bull. Math. Biol. 69, 1727–1746 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    L.M. Perko, Rotated vector fields. J. Diff. Equ. 103, 127–145 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tomislav Plesa
    • 1
  • Tomáš Vejchodský
    • 2
  • Radek Erban
    • 1
  1. 1.Mathematical InstituteUniversity of OxfordOxfordUK
  2. 2.Institute of MathematicsCzech Academy of SciencesPraha 1Czech Republic

Personalised recommendations