The evolved potentialities of information technologies permit data disambiguation, interoperability and sharing through the web to reach an effective comprehensive knowledge. International standards are published as a reference for integrating data in a common framework and in an open perspective. Standard ontologies exist both in the cartographic and the cultural heritage field; however, they are distinct standards, and some limits (in the spatial or semantic management) make them incomplete for being used to manage architectural heritage knowledge. It is necessary to exploit both disciplines’ contributions, integrating them in a model suitable for architectural heritage data management. In this paper, the ontological model for cartographic urban themes, OGC CityGML, is extended for managing architectural heritage multi-scale, multi-temporal, complex data. The conceptual framework is explained and some implementation aspects are considered, both for the definition of the extension and for the filling-in of such a structure with architectural heritage 3D data.


Semantics Standard Ontologies 3D model CityGML Interoperability ADE Architectural heritage 


  1. 1.
    Barnaghi, P., Wang, W., Henson, C., Taylor, K.: Semantics for the Internet of Things: early progress and back to the future. IJSWIS 8(1), 1–21 (2012)Google Scholar
  2. 2.
    Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J.R., Mellouli, S., Nahon, K., Scholl, H.J.: Understanding smart cities: an integrative framework. In: 2012 45th Hawaii International Conference on System Science (HICSS), pp. 2289–2297. IEEE (2012)Google Scholar
  3. 3.
    Schaffers, H., Komninos, N., Pallot, M., Trousse, B., Nilsson, M., Oliveira, A.: Smart Cities and the future internet: towards cooperation frameworks for open innovation. Future Internet Assembly 6656, 431–446 (2011)CrossRefGoogle Scholar
  4. 4.
    Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 1–17. Springer, Heidelberg (2009). doi: 10.1007/978-3-540-92673-3_0 Google Scholar
  5. 5.
    Laurini, R.: Geographic ontologies, gazetteers and multilingualism. Future Internet 7(1), 1–23 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Guizzardi, G.: Ontological foundations for structural conceptual models. CTIT, Centre for Telematics and Information Technology (2005)Google Scholar
  7. 7.
    Janssen, M., Charalabidis, Y., Zuiderwijk, A.: Benefits, adoption barriers and myths of open data and open government. Inf. Syst. Manage. 29(4), 258–268 (2012)CrossRefGoogle Scholar
  8. 8.
    Worboys, M.F., Duckham, M.: GIS: A Computing Perspective. CRC Press, Boca Raton (2004)Google Scholar
  9. 9.
    Laurini, R.: A conceptual framework for geographic knowledge engineering. J. Vis. Lang. Comput. 25(1), 2–19 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    INSPIRE European Directive. Accessed 11 Nov 2015
  11. 11.
    Open Geospatial Consortium. Accessed 11 Nov 2015
  12. 12.
    OGC CityGML. Accessed 10 Nov 2015
  13. 13.
    OGC geoSPARQL. Accessed 12 Nov 2015
  14. 14.
    World Wide Web Consortium. Accessed 09 Nov 2015
  15. 15.
    SPARQL. Accessed 12 Nov 2015
  16. 16.
    XML. Accessed 09 Nov 2015
  17. 17.
    RDF. Accessed 10 Nov 2015
  18. 18.
    GML. Accessed 12 Nov 2015
  19. 19.
    COLLADA. Accessed 12 Nov 2015
  20. 20.
    OWL. Accessed 11 Nov 2015
  21. 21.
    Geonames. Accessed 12 Nov 2015
  22. 22.
    Restoration charters. Accessed 11 Nov 2015
  23. 23.
    Doerr, M., Ore, C.E., Stead, S.: The CIDOC conceptual reference model - a new standard for knowledge sharing. In: Tutorials, Posters, Panels and Industrial Contributions at the 26th International Conference on Conceptual Modeling, ACS, vol. 83, pp. 51–56 (2007)Google Scholar
  24. 24.
    Getty vocabularies. Accessed 12 Nov 2015
  25. 25.
    Getty ARCHES project. Accessed 09 Nov 2015
  26. 26.
    Myers, D., Avramides, Y., Dalgity, A.: Changing the Heritage inventory paradigm, the ARCHES open source system. Conserv. Perspect. GCI Newslett. 28(2), 4 (2013)Google Scholar
  27. 27.
    Doerr, M., Hiebel, G., Eide, Ø.: CRMgeo: linking the CIDOC CRM to geoSPARQL through a spatiotemporal refinement. In: Institute of Computer Science, Technical report GR70013 (2013)Google Scholar
  28. 28.
    Ronzino, P., Niccolucci, F., Felicetti, A., Doerr, M.: CRMba a CRM extension for the documentation of standing buildings. Int. J. Digital Libr. 17(1), 71–78 (2015)CrossRefGoogle Scholar
  29. 29.
    Laurini, R., Thompson, D.: Fundamentals of spatial information systems. Academic Press, London (1992)zbMATHGoogle Scholar
  30. 30.
    Chiabrando, F., Spanò, A.: Points clouds generation using TLS and dense-matching techniques. A test on approachable accuracies of different tools. ISPRS Ann. Photogrammetry, Remote Sens. Spat. Inf. Sci. 5, 67–72 (2013)CrossRefGoogle Scholar
  31. 31.
    Brahim, L., Okba, K., Laurini, R.: Mathematical framework for topological relationships between ribbons and regions. J. Vis. Lang. Comput. 26, 66–81 (2015)CrossRefGoogle Scholar
  32. 32.
    Solovyov, S.A.: Categorical foundations of variety-based topology and topological systems. Fuzzy Sets Syst. 192, 176–200 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    OGC. CityGML UML diagrams as contained in CityGML Encoding Standard Version 2.0, OGC Doc. No. 12-019 (2012)Google Scholar
  34. 34.
    Métral, C., Falquet, G., Cutting-Decelle, A.F.: Towards semantically enriched 3D city models: an ontology-based approach. In: Academic Track of GeoWeb (2009)Google Scholar
  35. 35.
    Kolbe, T.H., Gröger, G., Plümer, L.: CityGML–3D city models and their potential for emergency response. In: Zlatanova, S., Li, J. (eds.) Geospatial Information Technology for Emergency Response. CRC Press. (2008)Google Scholar
  36. 36.
  37. 37.
  38. 38.
    de Laat, R., van Berlo, L.: Integration of BIM and GIS: the development of the CityGML GeoBIM extension. In: Kolbe, T.H., König, G., Nagel, C. (eds.) Advances in 3D Geo-Information Sciences. LNG&C, pp. 211–225. Springer, Heidelberg (2012)Google Scholar
  39. 39.
    Costamagna, E., Spanò, A.: CityGML for architectural heritage. In: Rahman, A.A., Boguslawski, P., Gold, C., Said, M.N. (eds.) Progress in Cultural Heritage Preservation. LNG&C, pp. 219–237. Springer, Heidelberg (2012)Google Scholar
  40. 40.
    Costamagna, E., Spanò, A.: Semantic models for architectural heritage documentation. In: Ioannides, M., Fritsch, D., Leissner, J., Davies, R., Remondino, F., Caffo, R. (eds.) EuroMed 2012. LNCS, vol. 7616, pp. 241–250. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34234-9_24 CrossRefGoogle Scholar
  41. 41.
    Fan, H.C., Meng, L.Q.: Automatic derivation of different levels of detail for 3D buildings modelled by CityGML. In: 24th International Cartography Conference, Santiago, Chile, pp. 15–21 (2009)Google Scholar
  42. 42.
    Geographical linked open data. Accessed 11 Nov 2015
  43. 43.
    Mennis, J.L.: Derivation and implementation of a semantic GIS data model informed by principles of cognition. Comput. Environ. Urban Syst. 27, 455–479 (2003)CrossRefGoogle Scholar
  44. 44.
    Fonseca, F., Egenhofer, M., Davis, C., Camara, G.: Semantic granularity ontology-driven geographic information systems. AMAI Ann. Math. Artif. Intell. 36(1–2), 121–151 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Scholl, M., Voisard, A.: Object-oriented database systems for geographic applications: an experiment with O2. In: Proc. Int. Workshop on Database Management Systems for Geographical Applications. Springer. (1992)Google Scholar
  46. 46.
    Belussi, A., Liguori, F., Marca, J., Migliorini, S., Negri, M., Pelagatti, G., Visentini, P.: Validation of geographical datasets against spatial constraints at conceptual level. In: UDMS 2011: 28th Urban Data Management Symposium, Delft, The Netherlands, 28–30 September 2011. Urban Data Management Society, OTB Research Institute for the Built Environment, Delft University of Technology (2011)Google Scholar
  47. 47.
    Van den Brink, L., Janssen, P., Quak, W., Stoter, J.E.: Linking spatial data: automated conversion of geo-information models and GML data to RDF. Int. J. Spat. Data Infrastruct. Res. 9, 59–85 (2014)Google Scholar
  48. 48.
    Van den Brink, L., Stoter, J.E., Zlatanova, S.: Modelling an application domain extension of CityGML in UML. In: ISPRS Conference 7th International Conference on 3D Geoinformation, The International Archives on the Photogrammetry, Remote Sensing and Spatial Information Sciences, 16–17 May 2012, Québec, Canada, vol. XXXVIII-4, part C26. ISPRS (2012)Google Scholar
  49. 49.
    Bastonero, P., Donadio, E., Chiabrando, F., Spanò, A.: Fusion of 3D models derived from TLS and image-based techniques for CH enhanced documentation. ISPRS Ann. Photogrammetry, Remote Sens. Spat. Inf. Sci. 2, 73–80 (2014)CrossRefGoogle Scholar
  50. 50.
    Chiabrando, F., Lingua, A., Piras M.: Direct photogrammetry using UAV: tests and first results. In: ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-1/W2, pp. 81–86 (2013). ISSN: 2194-9034Google Scholar
  51. 51.
    Dabove, P., Manzino, A.M., Taglioretti, C.: GNSS network products for post-processing positioning: limitations and peculiarities. Appl. Geomatics 6(1), 27–36 (2014)CrossRefGoogle Scholar
  52. 52.
    Bryan, P., Blake, B.: Metric Survey Specifications for English Heritage. English Heritage, Swindon (2000)Google Scholar
  53. 53.
    Donadio, E., Spanò, A.: Data collection and management for stratigraphic analysis of upstanding structures. In: Proceedings of the 1st International Conference on Geographical Information Systems Theory, Applications and Management, pp. 34–39 (2015). doi: 10.5220/0005470200340039, ISBN 978-989-758-099-4
  54. 54.
    ESRI: the multipatch geometry type. ESRI White Paper (2008). Accessed 12 Nov 2015

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Politecnico Di Torino – DIATITurinItaly

Personalised recommendations