Advertisement

Nature Inspired Partitioning Clustering Algorithms: A Review and Analysis

  • Behzad Saemi
  • Ali Asghar Rahmani HosseinabadiEmail author
  • Maryam Kardgar
  • Valentina Emilia Balas
  • Hamed Ebadi
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 634)

Abstract

Clustering algorithms are developed as a powerful tool to analyze the massive amount of data which are produced by modern applications. The main goal of these algorithms is to classify the data in clusters of objects, so that data in each cluster is similar based on specific criteria and data from two different clusters be different as much as possible. One of the most commonly used clustering methods is partitioning clustering method. So far various partitioning clustering algorithms are provided by researchers, among them inspiring the nature algorithms are the most popular used algorithms. In this paper some partitioning clustering algorithms inspiring by nature are described, and then these algorithms are compared and evaluated based on several standards such as time complexity, stability and also in terms of clustering accuracy on real and synthetic data sets. Simulation results have shown that combinational methods have good influence to increase the efficiency of algorithms and also the use of different operators can maintain population diversity and cause to reach a good answer in a reasonable time.

Keywords

Partitioning clustering Inspiring by the nature algorithms Stability Hybrid 

References

  1. 1.
    Jajuga, K., Sokolowski, A., Bock, H.H. (eds.): Classification, Clustering, and Data Analysis: Recent Advances and Applications. Springer Science & Business Media, Heidelberg (2012)Google Scholar
  2. 2.
    Das, S., Abraham, A., Konar, A.: Metaheuristic Clustering. Studies in Computational Intelligence, pp. 1–266. Springer (2009). ISBN 978-3-540-92172-1Google Scholar
  3. 3.
    Garey, M.R., Johnson, D., Witsenhausen, H.: The complexity of the generalized Lloyd-max problem (corresp.). IEEE Trans. Inf. Theor. 28(2), 255–256 (1982)CrossRefzbMATHGoogle Scholar
  4. 4.
    Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)CrossRefGoogle Scholar
  5. 5.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, No. 14, pp. 281–297, June 1967Google Scholar
  6. 6.
    Selim, S.Z., Ismail, M.A.: K-means-type algorithms: a generalized convergence theorem and characterization of local optimality. IEEE Trans. Pattern Anal. Mach. Intell. 1, 81–87 (1984)CrossRefzbMATHGoogle Scholar
  7. 7.
    Li, H.: Study on subspace clustering algorithm (2014)Google Scholar
  8. 8.
    Huang, Z.: A fast clustering algorithm to cluster very large categorical data sets in data mining. In: DMKD (1997)Google Scholar
  9. 9.
    Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern Recogn. 33(9), 1455–1465 (2000)CrossRefGoogle Scholar
  10. 10.
    Chatterjee, S., Mukhopadhyay, A.: Clustering ensemble: a multiobjective genetic algorithm based approach. Procedia Technol. 10, 443–449 (2013)CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Wu, X., Shen, Y.: Automatic clustering using genetic algorithms. Appl. Math. Comput. 218(4), 1267–1279 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Agustı, L.E., et al.: A new grouping genetic algorithm for clustering problems. Expert Syst. Appl. 39(10), 9695–9703 (2012)CrossRefGoogle Scholar
  13. 13.
    Bezdek, J.C., Keller, J., Krishnampuram, R., Pal, N.R.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer Academic Publishers, Dordercht (1999)CrossRefzbMATHGoogle Scholar
  14. 14.
    Fraser, A.S.: Simulation of genetic systems by automatic digital computers VI. Epistasis. Austr. J. Biol. Sci. 13(2), 150–162 (1960)CrossRefGoogle Scholar
  15. 15.
    Barker, J.S.F.: Simulation of genetic systems by automatic digital computers. III. Selection between alleles at an autosomal locus. Austr. J. Biol. Sci. 11, 603–612 (1958)Google Scholar
  16. 16.
    Bremermann, H.J.: Optimization through evolution and recombination. Self-organ. Syst. 93, 106 (1962)Google Scholar
  17. 17.
    Reed, J., Toombs, R., Barricelli, N.A.: Simulation of biological evolution and machine learning: I. Selection of self-reproducing numeric patterns by data processing machines, effects of hereditary control, mutation type and crossing. J. Theor. Biol. 17(3), 319–342 (1967)CrossRefGoogle Scholar
  18. 18.
    Holland, J.H.: Adaptation in natural and artificial system: an introduction with application to biology, control and artificial intelligence. University of Michigan Press, Ann Arbor (1975)Google Scholar
  19. 19.
    Rahman, M.A., Islam, M.Z.: A hybrid clustering technique combining a novel genetic algorithm with K-Means. Knowl. Based Syst. 71, 345–365 (2014)CrossRefGoogle Scholar
  20. 20.
    Laszlo, M., Mukherjee, S.: A genetic algorithm that exchanges neighboring centers for k-means clustering. Pattern Recogn. 28(16), 2359–2366 (2007)CrossRefGoogle Scholar
  21. 21.
    Laszlo, M., Mukherjee, S.: A genetic algorithm using hyper-quadtrees for low-dimensional k-means clustering. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 533–543 (2006)CrossRefGoogle Scholar
  22. 22.
    Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)CrossRefGoogle Scholar
  23. 23.
    Wan, M., Wang, C., Li, L., Yang, Y.: Chaotic ant swarm approach for data clustering. Appl. Soft Comput. 12(8), 2387–2393 (2012)CrossRefGoogle Scholar
  24. 24.
    von Frisch, K.: The Dance Language and Orientation of Bees. Harvard University Press, Cambridge (1967)Google Scholar
  25. 25.
    Abadeh, M.S., Habibi, J., Lucas, C.: Intrusion detection using a fuzzy genetics-based learning algorithm. J. Netw. Comput. Appl. 30(1), 414–428 (2007)CrossRefGoogle Scholar
  26. 26.
    Zhang, C., Ouyang, D., Ning, J.: Intrusion detection using a fuzzy genetics-based learning algorithm. Expert Syst. Appl. 37(7), 4761–4767 (2010)CrossRefGoogle Scholar
  27. 27.
    Yan, X., Zhu, Y., Zou, W., Wang, L.: A new approach for data clustering using hybrid artificial bee colony algorithm. Neurocomputing 97, 241–250 (2012)CrossRefGoogle Scholar
  28. 28.
    Karaboga, D., Ozturk, C.: A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Appl. Soft Comput. 11(1), 652–657 (2011)CrossRefGoogle Scholar
  29. 29.
    Poli, R., Kennedy, J.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)CrossRefGoogle Scholar
  30. 30.
    Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, Piscataway, pp. 1942–1948 (1995)Google Scholar
  31. 31.
    Eberhart, R.C., Shi, Y.: Particle swarm optimization: developments, applications and resources. In: 2001. Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 81–86. IEEE (2001)Google Scholar
  32. 32.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)Google Scholar
  33. 33.
    Tsai, C.Y., Kao, I.W.: Particle swarm optimization with selective particle regeneration for data clustering. Expert Syst. Appl. 38(6), 6565–6576 (2011)CrossRefGoogle Scholar
  34. 34.
    Kao, Y.T., Zahara, E., Kao, I.W.: A hybridized approach to data clustering. Expert Syst. Appl. 34(3), 1754–1762 (2008)CrossRefGoogle Scholar
  35. 35.
    Zhao, M., Tang, H., Guo, J., Sun, Y.: Data clustering using particle swarm optimization. In: Future Information Technology, pp. 607–612. Springer, Heidelberg (2014)Google Scholar
  36. 36.
    Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: IEEE Congress on Evolutionary computation, CEC 2007, pp. 4661–4667. IEEE, September 2007Google Scholar
  37. 37.
    Abdeyazdan, M.: Data clustering based on hybrid K-harmonic means and modifier imperialist competitive algorithm. J. Supercomput. 68(2), 574–598 (2014)CrossRefGoogle Scholar
  38. 38.
    Niknam, T., Fard, E.T., Pourjafarian, N., Rousta, A.: An efficient hybrid algorithm based on modified imperialist competitive algorithm and K-means for data clustering. Eng. Appl. Artif. Intell. 24(2), 306–317 (2011)CrossRefGoogle Scholar
  39. 39.
    Zadeh, M.R.D., Fathian, M., Gholamian, M.R.: A new method for clustering based on development of imperialist competitive algorithm. China Commun. 11(12), 54–61 (2014)CrossRefGoogle Scholar
  40. 40.
    Niknam, T., Fard, E.T., Ehrampoosh, S., Rousta, A.: A new hybrid imperialist competitive algorithm on data clustering. Sadhana 36(3), 293–315 (2011)CrossRefGoogle Scholar
  41. 41.
    Glover, F.: Tabu search-part I. ORSA J. Comput. 1(3), 190–206 (1989)CrossRefzbMATHGoogle Scholar
  42. 42.
    Pan, S.M., Cheng, K.S.: Evolution-based tabu search approach to automatic clustering. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(5), 827–838 (2007)CrossRefGoogle Scholar
  43. 43.
    Güngör, Z., Ünler, A.: K-harmonic means data clustering with tabu-search method. Appl. Math. Model. 32(6), 1115–1125 (2008)CrossRefzbMATHGoogle Scholar
  44. 44.
    Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)CrossRefzbMATHGoogle Scholar
  45. 45.
    Hosseinabadi, A.R., Yazdanpanah, M., Rostami, A.S.: A new search algorithm for solving symmetric traveling salesman problem based on gravity. World Appl. Sci. J. 16(10), 1387–1392 (2012)Google Scholar
  46. 46.
    Hosseinabadi, A.R., Ghaleh, M.R., Hashemi, S.E.: Application of modified gravitational search algorithm to solve the problem of teaching Hidden Markov Model. Int. J. Comput. Sci. 10(3), 1–8 (2013)Google Scholar
  47. 47.
    Tavakkolai, H., Hosseinabadi, A.R., Yadollahi, M., Mohammadpour, T.: Using gravitational search algorithm for in advance reservation of resources in solving the scheduling problem of works in workflow workshop environment. Indian J. Sci. Technol. 8(11), 1–16 (2015)CrossRefGoogle Scholar
  48. 48.
    Tavakkolai, H., Yadollahi, N., Yadollahi, M., Hosseinabadi, A.R., Rezaei, P., Kardgar, M.: Sensor selection wireless multimedia sensor network using gravitational search algorithm. Indian J. Sci. Technol. 8(14), 1–6 (2015)CrossRefGoogle Scholar
  49. 49.
    Hosseinabadi, A.R., Kardgar, M., Shojafar, M., Shamshirband, S., Abraham, A.: Gravitational search algorithm to solve open vehicle routing problem. In: 6th International Conference on Innovations in Bio-Inspired Computing and Applications (IBICA 2015). Advances in Intelligent Systems and Computing, kochi, India, pp. 93–103. Springer (2016)Google Scholar
  50. 50.
    Rostami, A.S., Bernety, H.M., Hosseinabadi, A.R.: A novel and optimized algorithm to select monitoring sensors by GSA. In: International Conference on Control, Instrumentation and Automation (ICCIA), pp. 829–834 (2011)Google Scholar
  51. 51.
    Hosseinabadi, A.R., Siar, H., Shamshirband, S., Shojafar, M., Nizam, M., Nasir, M.H.: Using the gravitational emulation local search algorithm to solve the multi-objective flexible dynamic job shop scheduling problem in Small and Medium Enterprises. In: Annals of Operations Research, vol. 229, Issue 1, pp. 451–474 (2015)Google Scholar
  52. 52.
    Hosseinabadi, A.R., Farahabadi, A.B., Rostami, M.S., Lateran, A.F.: Presentation of a new and beneficial method through problem solving timing of open shop by random algorithm gravitational emulation local search. Int. J. Comput. Sci. 10(1), 745–752 (2013)Google Scholar
  53. 53.
    Hatamlou, A., Abdullah, S., Nezamabadi-pour, H.: A combined approach for clustering based on K-means and gravitational search algorithms. Swarm Evol. Comput. 6, 47–52 (2012)CrossRefGoogle Scholar
  54. 54.
    Dowlatshahi, M.B., Nezamabadi-pour, H.: GGSA: A grouping gravitational search algorithm for data clustering. Eng. Appl. Artif. Intell. 36, 114–121 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Behzad Saemi
    • 1
  • Ali Asghar Rahmani Hosseinabadi
    • 2
    Email author
  • Maryam Kardgar
    • 2
  • Valentina Emilia Balas
    • 3
  • Hamed Ebadi
    • 4
  1. 1.Computer DepartmentKavosh Institute of Higher EducationMahmood AbadIran
  2. 2.Young Researchers and Elite Club, Ayatollah Amoli BranchIslamic Azad UniversityAmolIran
  3. 3.Aurel Vlaicu’ UniversityAradRomania
  4. 4.Department of Electrical and ElectronicsKnowledge-Based Institute of TechnologyTabrizIran

Personalised recommendations