Advertisement

Intraoperative Neurophysiological Monitoring for Craniovertebral Junction Surgery

  • Francesco SalaEmail author
  • Pietro Meneghelli
Chapter
Part of the Acta Neurochirurgica Supplement book series (NEUROCHIRURGICA, volume 125)

Abstract

Craniovertebral junction (CVJ) surgery encompasses a wide spectrum of neurosurgical procedures ranging from transoral approaches for CVJ bone anomalies to surgery for intramedullary tumours. Intraoperative neurophysiological monitoring (IONM) has been increasingly used in recent years because of its ability to prevent neurological complications during surgery. In CVJ surgery the risk of neurological injuries is related first to the positioning of the patient and then to the surgical procedure. Application of IONM during the positioning of the patient permits fast recognition of impending causes of neurological injury. During surgery, continuous IONM permits real-time assessment of the functional integrity of the spinal tracts and provides useful feedback during surgical manoeuvres. The applications of IONM are mainly related to intradural procedures, but wider application of these techniques during surgery for CVJ instability and degenerative disorders has recently been described, leading also to better understanding of the pathophysiology of spinal cord injuries. In this paper we review and discuss the principal IONM techniques used during surgery around the CVJ.

Keywords

Intraoperative neurophysiological monitoring (IONM) Motor evoked potentials (MEPs) Somatosensory evoked potentials (SSEPs) Craniovertebral junction (CVJ) Surgery 

Notes

Competing Interests

The authors declare that they have no competing interests.

Compliance with Ethical Standards

No financial support was received for this work.

References

  1. 1.
    Bose B, Sestokas AK, Schwartz DM. Neurophysiological monitoring of spinal cord function during instrumented anterior cervical fusion. Spine J. 2004;4:202–7.CrossRefGoogle Scholar
  2. 2.
    Jahangiri FR, Holmberg A, Vega-Bermudez F, Arlet V. Preventing position-related brachial plexus injury with intraoperative somatosensory evoked potentials and transcranial electrical motor evoked potentials during anterior cervical spine surgery. Am J Electroneurodiagnostic Technol. 2011;51:198–205.CrossRefGoogle Scholar
  3. 3.
    Hilibrand AS, Schwartz DM, Sethuraman V, Vaccaro AR, Albert TJ. Comparison of transcranial electric motor and somatosensory evoked potential monitoring during cervical spine surgery. J Bone Joint Surgery Am. 2004;86-A:1248–53.CrossRefGoogle Scholar
  4. 4.
    Sala F, Palandri G, Basso E, Lanteri P, Deletis V, Faccioli F, Bricolo A. Motor evoked potential monitoring improves outcome after surgery for intramedullary spinal cord tumors: a historical control study. Neurosurgery. 2006;58:1129–43. discussion 1129–1143.CrossRefGoogle Scholar
  5. 5.
    Journee HL, Polak HE, de Kleuver M. Influence of electrode impedance on threshold voltage for transcranial electrical stimulation in motor evoked potential monitoring. Med Biol Eng Comput. 2004;42:557–61.CrossRefGoogle Scholar
  6. 6.
    Sala F, Bricolo A, Faccioli F, Lanteri P, Gerosa M. Surgery for intramedullary spinal cord tumors: the role of intraoperative (neurophysiological) monitoring. Eur Spine J. 2007;16(Suppl 2):S130–9.CrossRefGoogle Scholar
  7. 7.
    Macdonald DB, Skinner S, Shils J, Yingling C. Intraoperative motor evoked potential monitoring – a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol. 2013;124:2291–316.CrossRefGoogle Scholar
  8. 8.
    Burke D, Nuwer MR, Daube J, Fischer C, Schramm J, Yingling CD, Jones SJ. Intraoperative monitoring. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol. 1999;52(Suppl):133–48.Google Scholar
  9. 9.
    Pelosi L, Lamb J, Grevitt M, Mehdian SM, Webb JK, Blumhardt LD. Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin Neurophysiol. 2002;113:1082–91.CrossRefGoogle Scholar
  10. 10.
    Eisner W, Schmid UD, Reulen HJ, Oeckler R, Olteanu-Nerbe V, Gall C, Kothbauer K. The mapping and continuous monitoring of the intrinsic motor nuclei during brain stem surgery. Neurosurgery. 1995;37:255–65.CrossRefGoogle Scholar
  11. 11.
    Schlake HP, Goldbrunner RH, Milewski C, Krauss J, Trautner H, Behr R, Sorensen N, Helms J, Roosen K. Intra-operative electromyographic monitoring of the lower cranial motor nerves (LCN IX–XII) in skull base surgery. Clin Neurol Neurosurg. 2001;103:72–82.CrossRefGoogle Scholar
  12. 12.
    Sala F, Lanteri P, Bricolo A. Motor evoked potential monitoring for spinal cord and brain stem surgery. Adv Tech Stand Neurosurg. 2004;29:133–69.CrossRefGoogle Scholar
  13. 13.
    Morishita Y, Maeda T, Ueta T, Naito M, Shiba K. Dynamic somatosensory evoked potentials to determine electrophysiological effects on the spinal cord during cervical spine extension: clinical article. J Neurosurg Spine. 2013;19:288–92.CrossRefGoogle Scholar
  14. 14.
    Heidegger T, Ziemann U. Prolongation of central motor conduction time by neck extension in compressive cervical myelopathy. Clin Neurophysiol. 2011;122:1891–3.CrossRefGoogle Scholar
  15. 15.
    Plata Bello J, Perez-Lorensu PJ, Roldan-Delgado H, Brage L, Rocha V, Hernandez-Hernandez V, Doniz A, Garcia-Marin V. Role of multimodal intraoperative neurophysiological monitoring during positioning of patient prior to cervical spine surgery. Clin Neurophysiol. 2015;126:1264–70.CrossRefGoogle Scholar
  16. 16.
    Eggspuehler A, Sutter MA, Grob D, Jeszenszky D, Porchet F, Dvorak J. Multimodal intraoperative monitoring (MIOM) during cervical spine surgical procedures in 246 patients. Eur Spine J. 2007;16(Suppl 2):S209–15.CrossRefGoogle Scholar
  17. 17.
    Sutter M, Eggspuehler A, Grob D, Jeszenszky D, Benini A, Porchet F, Mueller A, Dvorak J. The diagnostic value of multimodal intraoperative monitoring (MIOM) during spine surgery: a prospective study of 1,017 patients. Eur Spine J. 2007;16(Suppl 2):S162–70.CrossRefGoogle Scholar
  18. 18.
    Labrom RD, Hoskins M, Reilly CW, Tredwell SJ, Wong PK. Clinical usefulness of somatosensory evoked potentials for detection of brachial plexopathy secondary to malpositioning in scoliosis surgery. Spine. 2005;30:2089–93.CrossRefGoogle Scholar
  19. 19.
    Schwartz DM, Sestokas AK, Hilibrand AS, Vaccaro AR, Bose B, Li M, Albert TJ. Neurophysiological identification of position-induced neurologic injury during anterior cervical spine surgery. J Clin Monit Comput. 2006;20:437–44.CrossRefGoogle Scholar
  20. 20.
    American Society of Anesthesiologists Task Force on Prevention of Perioperative Peripheral Neuropathies. Practice advisory for the prevention of perioperative peripheral neuropathies: an updated report by the American Society of Anesthesiologists Task Force on Prevention of Perioperative Peripheral Neuropathies. Anesthesiology. 2011;114:741–54.CrossRefGoogle Scholar
  21. 21.
    Klekamp J. Treatment of basilar invagination. Eur Spine J. 2014;23:1656–65.CrossRefGoogle Scholar
  22. 22.
    Kim CH, Hong JT, Chung CK, Kim JY, Kim SM, Lee KW. Intraoperative electrophysiological monitoring during posterior craniocervical distraction and realignment for congenital craniocervical anomaly. Eur Spine J. 2015;24:671–8.CrossRefGoogle Scholar
  23. 23.
    Ogihara N, Takahashi J, Hirabayashi H, Mukaiyama K, Kato H. Surgical treatment of Klippel–Feil syndrome with basilar invagination. Eur Spine J. 2013;22(Suppl 3):S380–7.CrossRefGoogle Scholar
  24. 24.
    Dolan EJ, Transfeldt EE, Tator CH, Simmons EH, Hughes KF. The effect of spinal distraction on regional spinal cord blood flow in cats. J Neurosurg. 1980;53:756–64.CrossRefGoogle Scholar
  25. 25.
    Danto JMT, Hertzberg H, Bolognese P, Conlon J, Korn A. The neurophysiological intraoperative monitoring of Chiari malformation surgery. Rivista Medica. 2006;12:51–4.Google Scholar
  26. 26.
    Anderson RC, Dowling KC, Feldstein NA, Emerson RG. Chiari I malformation: potential role for intraoperative electrophysiologic monitoring. J Clin Neurophysiol. 2003;20:65–72.CrossRefGoogle Scholar
  27. 27.
    Zamel K, Galloway G, Kosnik EJ, Raslan M, Adeli A. Intraoperative neurophysiologic monitoring in 80 patients with Chiari I malformation: role of duraplasty. J Clin Neurophysiol. 2009;26:70–5.CrossRefGoogle Scholar
  28. 28.
    Anderson RC, Emerson RG, Dowling KC, Feldstein NA. Improvement in brainstem auditory evoked potentials after suboccipital decompression in patients with Chiari I malformations. J Neurosurg. 2003;98:459–64.CrossRefGoogle Scholar
  29. 29.
    Barzilai O, Roth J, Korn A, Constantini S. The value of multimodality intraoperative neurophysiological monitoring in treating pediatric Chiari malformation type I. Acta Neurochir. 2016;158:335–40.CrossRefGoogle Scholar
  30. 30.
    Skinner SA. Neurophysiologic monitoring of the spinal accessory nerve, hypoglossal nerve, and the spinomedullary region. J Clin Neurophysiol. 2011;28:587–98.CrossRefGoogle Scholar
  31. 31.
    Legatt AD. Mechanisms of intraoperative brainstem auditory evoked potential changes. J Clin Neurophysiol. 2002;19:396–408.CrossRefGoogle Scholar
  32. 32.
    Morota N, Deletis V, Lee M, Epstein FJ. Functional anatomic relationship between brain-stem tumors and cranial motor nuclei. Neurosurgery. 1996;39:787–93. discussion 793–784.CrossRefGoogle Scholar
  33. 33.
    Matthies C, Raslan F, Schweitzer T, Hagen R, Roosen K, Reiners K. Facial motor evoked potentials in cerebellopontine angle surgery: technique, pitfalls and predictive value. Clin Neurol Neurosurg. 2011;113:872–9.CrossRefGoogle Scholar
  34. 34.
    Kodama K, Javadi M, Seifert V, Szelenyi A. Conjunct SEP and MEP monitoring in resection of infratentorial lesions: lessons learned in a cohort of 210 patients. J Neurosurg. 2014;121:1453–61.CrossRefGoogle Scholar
  35. 35.
    Neuloh G, Bogucki J, Schramm J. Intraoperative preservation of corticospinal function in the brainstem. J Neurol Neurosurg Psychiatry. 2009;80:417–22.CrossRefGoogle Scholar
  36. 36.
    Young W, Koreh I. Potassium and calcium changes in injured spinal cords. Brain Res. 1986;365:42–53.CrossRefGoogle Scholar
  37. 37.
    Young W, Rosenbluth J, Wojak JC, Sakatani K, Kim H. Extracellular potassium activity and axonal conduction in spinal cord of the myelin-deficient mutant rat. Exp Neurol. 1989;106:41–51.CrossRefGoogle Scholar
  38. 38.
    Sala F, Niimi Y, Krzan MJ, Berenstein A, Deletis V. Embolization of a spinal arteriovenous malformation: correlation between motor evoked potentials and angiographic findings: technical case report. Neurosurgery. 1999;45:932–7. discussion 937–938.CrossRefGoogle Scholar
  39. 39.
    Kothbauer KF, Deletis V, Epstein FJ. Motor-evoked potential monitoring for intramedullary spinal cord tumor surgery: correlation of clinical and neurophysiological data in a series of 100 consecutive procedures. Neurosurg Focus. 1998;4:e1.PubMedGoogle Scholar
  40. 40.
    Neuloh G, Pechstein U, Cedzich C, Schramm J. Motor evoked potential monitoring with supratentorial surgery. Neurosurgery. 2004;54:1061–70. discussion 1070–1062.CrossRefGoogle Scholar
  41. 41.
    Kearse LA Jr, Lopez-Bresnahan M, McPeck K, Tambe V. Loss of somatosensory evoked potentials during intramedullary spinal cord surgery predicts postoperative neurologic deficits in motor function [corrected]. J Clin Anesth. 1993;5:392–8.CrossRefGoogle Scholar
  42. 42.
    Jallo GI, Kothbauer KF, Epstein FJ. Intrinsic spinal cord tumor resection. Neurosurgery. 2001;49:1124–8.PubMedGoogle Scholar
  43. 43.
    Lustgarten J, McCormick P. Management of intramedullary lesions of the cervicomedullary junction and high cervical spinal cord. In: Bambakidis NC, Spetzler RF, Sonntag VKH, editors. Surgery of the craniovertebral junction (II ed). Stuttgart: Thieme Medical Publishers; 2013. p. 181–92.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of NeurosurgeryUniversity HospitalVeronaItaly

Personalised recommendations