Energy-Efficiency and Performance Comparison of Aerosol Optical Depth Retrieval on Distributed Embedded SoC Architectures

  • Dustin FeldEmail author
  • Jochen Garcke
  • Jia Liu
  • Eric Schricker
  • Thomas Soddemann
  • Yong Xue


The Aerosol Optical Depth (AOD) is a significant optical property of aerosols and is applied to the atmospheric correction of remotely sensed surface features as well as for monitoring volcanic eruptions, forest fires, and air quality in general, as well as gathering data for climate predictions on the basis of observations from satellites. We have developed an AOD retrieval workflow for processing satellite data not only with ordinary CPUs but also with parallel processors and GPU accelerators in a distributed hardware environment. This workflow includes pre-processing procedures which are followed by the runtime dominating main retrieval method.

In this paper, we investigate if and how the main retrieval method can accommodate recent upcoming embedded hardware architectures in the field of high performance computing. We analyze and confirm the achieved performance as well as energy efficiency with real-world data from the moderate-resolution imaging spectro-radiometer (MODIS) and even compare the potential of those new architectures to today’s commonly available HPC hardware. Due to the very low energy intake, such embedded hardware architectures provide a great chance for situations with strong energy constraints like the pre-processing of recorded data on board of satellites.



This work was partially funded by the German Ministry for Education and Research (BMBF) under project grant 01—S13016A within the ITEA2-Project MACH.


  1. 1.
    R.J. Flowerdew, J.D. Haigh, An approximation to improve accuracy in the derivation of surface reflectances from multi-look satellite radiometers. Geophys. Res. Lett. 22, 1693–1696 (1995)CrossRefGoogle Scholar
  2. 2.
    R.C. Levy, S. Mattoo, L.A. Munchak, et al., The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 6, 2989–3034 (2013)CrossRefGoogle Scholar
  3. 3.
    J. Liu, D. Feld, Y. Xue, J. Garcke, T. Soddemann, Multicore processors and graphics processing unit accelerators for parallel retrieval of aerosol optical depth from satellite data: implementation, performance, and energy efficiency. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 2306–2317 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Liu, D. Feld, Y. Xue, et al., An efficient geosciences workflow on multi-core processors and GPUs: a case study for aerosol optical depth retrieval from MODIS satellite data. Int. J. Digital Earth 9, 748–765 (2016)CrossRefGoogle Scholar
  5. 5.
    U. Lohmann, J. Feichter, Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715–737 (2005)CrossRefGoogle Scholar
  6. 6.
    L. Mei, Y. Xue, H. Xu, et al., Validation and analysis of aerosol optical thickness retrieval over land. Int. J. Remote Sens. 33, 781–803 (2012)CrossRefGoogle Scholar
  7. 7.
    NASA, Level 1 and Atmosphere Archive and Distribution System (LAADS Web). Website, 2015. Online at, visited 20 Oct 2015
  8. 8.
    U. Pöschl, Atmospheric aerosols: composition, transformation, climate and health effects. Angew. Chem. Int. Ed. 44, 7520–7540 (2005)CrossRefGoogle Scholar
  9. 9.
    W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. (Cambridge University Press, New York, 1992)zbMATHGoogle Scholar
  10. 10.
    L.A. Remer, R.G. Kleidman, R.C. Levy, et al., Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res. Atmos. 113, D14S07 (2008)Google Scholar
  11. 11.
    T.F. Stocker, D. Qin, G.-K. Plattner, et al., Technical summary, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. by T.F. Stocker, D. Qin, G.-K. Plattner, et al. (Cambridge University Press, Cambridge/New York, 2013), book section TS, pp. 33–115Google Scholar
  12. 12.
    J. Tang, Y. Xue, T. Yu, Y. Guan, Aerosol optical thickness determination by exploiting the synergy of TERRA and AQUA MODIS. Remote Sens. Environ. 94, 327–334 (2005)CrossRefGoogle Scholar
  13. 13.
    T.-C. Tsai, Y.-J. Jeng, D.A. Chu, J.-P. Chen, S.-C. Chang, Analysis of the relationship between MODIS aerosol optical depth and particulate matter from 2006 to 2008. Atmos. Environ. 45, 4777–4788 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Wang, Y. Xue, Y. Li, et al., Prior knowledge-supported aerosol optical depth retrieval over land surfaces at 500m spatial resolution with MODIS data. Int. J. Remote Sens. 33, 674–691 (2012)CrossRefGoogle Scholar
  15. 15.
    F. Warmerdam, GDAL - Geospatial Data Abstraction Library. Website, 2015. Online at, visited 20 Oct 2015
  16. 16.
    Y. Xue, A.P. Cracknell, Operational bi-angle approach to retrieve the earth surface albedo from AVHRR data in the visible band. Int. J. Remote Sens. 16, 417–429 (1995)CrossRefGoogle Scholar
  17. 17.
    Y. Xue, X. He, H. Xu, et al., China Collection 2.0: the aerosol optical depth dataset from the synergetic retrieval of aerosol properties algorithm. Atmos. Environ. 95, 45–58 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dustin Feld
    • 1
    Email author
  • Jochen Garcke
    • 1
    • 2
  • Jia Liu
    • 3
  • Eric Schricker
    • 1
  • Thomas Soddemann
    • 1
  • Yong Xue
    • 3
  1. 1.Fraunhofer Institute for Algorithms and Scientific Computing SCAISankt AugustinGermany
  2. 2.Institute for Numerical SimulationRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  3. 3.Institute of Remote Sensing and Digital EarthBeijingChina

Personalised recommendations