Advertisement

The cloud4health Project: Secondary Use of Clinical Data with Secure Cloud-Based Text Mining Services

  • Juliane FluckEmail author
  • Philipp Senger
  • Wolfgang Ziegler
  • Steffen Claus
  • Horst Schwichtenberg
Chapter
  • 503 Downloads

Abstract

Advances in translational and personalized medicine require the integration of multiple patient related resources across different organizational bodies. Thus, secure cloud environments for huge data processing, storage and data integration are needed. Moreover, the integration of clinical patient data is indispensable for translational research. Although operational e-health record systems are established in most hospitals, many clinical and phenotypically relevant parameters can only be found in unstructured texts like medical records and reports. To meet these challenges, the cloud4health project established a cloud-based text mining platform to facilitate information extraction of biomedical texts in a secure cloud environment. In order to comply with privacy regulations, general technical demands and security rules for such a cloud installation were developed and have been implemented. Different clinical use cases show the wide spectrum of application of specific text mining services in a secure cloud environment. As application examples, two use cases utilizing text mining technologies to analyse pathology and surgery reports are analysed in detail.

Notes

Acknowledgements

The project cloud4health has been funded by the German Federal Ministry of Economics and Technology in the funding program “Trusted Cloud” (FKZ 01MD11009).

Besides Fraunhofer SCAI, four other partners participated in and contributed to the project: Averbis GmbH, located in Freiburg, coordinated cloud4health, set up the UMIA based text mining environment in the cloud and developed text mining services as well. The Friedrich-Alexander-University Erlangen-Nuremberg and the RHÖN-KLINIKUM AG Bad Neustadt/Saale provided the clinical data and set up the clinical extraction workflow. Finally, TMF—Technology, Methods, and Infrastructure for Networked Medical Research, Berlin, was responsible for data protection related issues.

References

  1. 1.
    American Recovery and Reinvestment Act, Website, 2009. Online at https://www.washington.edu/research/gca/recovery/index.html, visited 18 Dec 2015
  2. 2.
    Berliner Forschungsplattform Gesundheit, Website. Online at http://medinfo.charite.de/forschung/berliner_forschungsplattform_gesundheit/, visited 18 Dec 2015.
  3. 3.
    D. Carrell, A strategy for deploying secure cloud-based natural language processing systems for applied research involving clinical text, in Proceedings of the 44th Hawaii International Conference on System Sciences, IEEE Computer Society, pp. 1–11 (2011)Google Scholar
  4. 4.
    W.W. Chapman, P.M. Nadkarni, L. Hirschman, et al., Overcoming barriers to NLP for clinical text: the role of shared tasks and the need for additional creative solutions. J. Am. Med. Inform. Assoc. 18, 540–543 (2011)CrossRefGoogle Scholar
  5. 5.
    K. Chard, M. Russell, Y. Lussier, E. Mendonça, J. Silverstein, A cloud-based approach to medical NLP, in AMIA Annual Symposium Proceedings, PMC, US National Library of Medicine, National Institutes of Health, pp. 207–216 (2011)Google Scholar
  6. 6.
    J. Christoph, L. Griebel, I. Leb, et al., Secure secondary use of clinical data with cloud-based NLP services. Towards a highly scalable research infrastructure. Methods Inf. Med. 54, 276–282 (2015)Google Scholar
  7. 7.
    C. Chute, J. Pathak, G. Savova, et al., The SHARPn project on secondary use of electronic medical record data: progress, plans, and possibilities, in AMIA Annual Symposium Proceedings, PMC, US National Library of Medicine, National Institutes of Health, pp. 248–256 (2011)Google Scholar
  8. 8.
    Cloud Standards Customer Council, Impact of Cloud Computing on Healthcare, Tech. Rep. Online at http://www.cloud-council.org/deliverables/CSCC-Impact-of-Cloud-Computing-on-Healthcare.pdf, visited 18 Dec 2015
  9. 9.
    cloud4health – Cloud Computing für Big-Data-Analysen in der Medizin, Website, 2013. Online at http://cloud4health.de/, visited 18 Dec 2015
  10. 10.
    F. Dankar, K. El Emam, A. Neisa, T. Roffey, Estimating the re-identification risk of clinical data sets. BMC Med. Inform. Decis. Mak. 12, 66 (2012)CrossRefGoogle Scholar
  11. 11.
    J.C. Denny, Chapter 13: Mining electronic health records in the genomics era, PLoS Comput. Biol. 8, e1002823 (2012)Google Scholar
  12. 12.
    J.C. Denny, A. Spickard, R.A. Miller, et al., Identifying UMLS concepts from ECG impressions using KnowledgeMap, in AMIA … Annual Symposium proceedings/AMIA Symposium. AMIA Symposium, pp. 196–200 (2005)Google Scholar
  13. 13.
    T.M. Deserno, V. Deserno, V. Lowitsch, et al., Aspekte des datenschutzgerechten Managements klinischer Forschungsdaten, in Proceedings of the 2012 GI Jahrestagung, pp. 1491–1505 (2012)Google Scholar
  14. 14.
    DROOLS – Business Rules Management System, Website, 2015. Online at http://www.drools.org, visited 18 Dec 2015
  15. 15.
    G.S. Dunham, M.G. Pacak, A.W. Pratt, Automatic indexing of pathology data. J. Am. Soc. Inf. Sci. 29, 81–90 (1978)CrossRefGoogle Scholar
  16. 16.
    Elektronische Fallakte, Website. Online at http://www.fallakte.de, visited 18 Dec 2015
  17. 17.
    P.L. Elkin, A.P. Ruggieri, S.H. Brown, et al., A randomized controlled trial of the accuracy of clinical record retrieval using SNOMED-RT as compared with ICD9-CM, in Proceedings of the AMIA Symposium, pp. 159–163 (2001)Google Scholar
  18. 18.
    Endoprothesenregister Deutschland, Website, 2014. Online at http://www.eprd.de, visited 18 Dec (2015)
  19. 19.
    Federal Data Protection Act, Website, 1990. Online at http://www.gesetze-im-internet.de/englisch_bdsg/index.html, visited 18 Dec 2015
  20. 20.
    Federal Register/Vol. 78, No. 17 – Modifications to the Health Insurance Portability and Accountability Act, Website, 2013. Online at https://www.gpo.gov/fdsys/pkg/FR-2013-01-25/pdf/2013-01073.pdf, visited 18 Dec 2015
  21. 21.
    C. Friedman, L. Shagina, Y. Lussier, G. Hripcsak, Automated encoding of clinical documents based on natural language processing. J. Am. Med. Inform. Assoc. 11, 392–402 (2004)CrossRefGoogle Scholar
  22. 22.
    T. Ganslandt, S. Mate, K. Helbing, U. Sax, H.U. Prokosch, Unlocking data for clinical research – the German i2b2 experience. Appl. Clin. Inform. 2, 116–127 (2011)CrossRefGoogle Scholar
  23. 23.
    L. Griebel, H.-U. Prokosch, F. Köpcke, et al., A scoping review of cloud computing in healthcare, (2015). Online at http://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-015-0145-7, visited 6 Nov 2015
  24. 24.
    H. Gurulingappa, B. Müller, M. Hofmann-Apitius, A semantic platform for information retrieval from E-health records, in The Twentieth Text REtrieval Conference (TREC 2011) Proceedings (2011)Google Scholar
  25. 25.
    D. Hanisch, K. Fundel, H.-T. Mevissen, R. Zimmer, J. Fluck, ProMiner: rule-based protein and gene entity recognition. BMC Bioinf. 6, 1–9 (2005)CrossRefGoogle Scholar
  26. 26.
    T. Hupperich, H. Löhr, A.-R. Sadeghi, M. Winandy, Flexible patient-controlled security for electronic health records, in IHI ’12: Proceedings of the 2Nd ACM SIGHIT International Health Informatics Symposium (Association for Computing Machinery, New York, 2012), pp. 727–732CrossRefGoogle Scholar
  27. 27.
    IT-Grundschutz webpages of the Federal Office for Information Security (BSI), Website, 2015. Online at https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html, visited 18 Dec 2015
  28. 28.
    Is Open Source Software Insecure? An Introduction to the Issues, Website, 2013. Online at http://oss-watch.ac.uk/resources/securityintro, visited 18 Dec 2015
  29. 29.
    M. Li, S. Yu, Y. Zheng, K. Ren, W. Lou, Scalable and secure sharing of personal health records in cloud computing using attribute-based encryption, IEEE Trans. Parallel Distrib. Syst. 24, 131–143 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Medicine, Recommendations and practices for using cloud computing in medical environments: Stanford Medicine, Information Resources and Technology, Tech. Rep. Online at https://med.stanford.edu/irt/security/cloud.html, visited 6 Nov 2015
  31. 31.
    C. Neuhaus, R. Wierschke, M.V. Löwis, A. Polze, Aspekte des datenschutzgerechten Managements klinischer Forschungsdaten, in Proceedings of the 2011 GI Jahrestagung, Workshop “Zukunftsfähiges IT-Management im medizinischen Bereich” (2011)Google Scholar
  32. 32.
    Operational Data Model, Website, 2015. Online at http://www.cdisc.org/odm, visited 18 Dec 2015
  33. 33.
    OpenNebula Project Webpages, Website, 2015. Online at http://opennebula.org/, visited 18 Dec 2015
  34. 34.
    OpenVPN, Website, 2015. Online at https://openvpn.net/, visited 18 Dec 2015
  35. 35.
    Open vSwitch – Production Quality, Multilayer Open Virtual Switch, Website, 2015. Online at http://openvswitch.org/, visited 18 Dec 2015
  36. 36.
    K. Pommerening, K. Helbing, T. Ganslandt, J. Drepper, Identitätsmanagement für Patienten in medizinischen Forschungsverbünden, in Proceedings of the 2012 GI Jahrestagung, pp. 1520–1529 (2012)Google Scholar
  37. 37.
    H.B. Rahmouni, T. Solomonides, M.C. Mont, S. Shiu, Privacy compliance and enforcement on European healthgrids: an approach through ontology. Philos. Trans. Math. Phys. Eng. Sci. 368, 4057–4072 (2010)CrossRefGoogle Scholar
  38. 38.
    S. Rea, C. Chute, J. Pathak, et al., Building a robust, scalable and standards-driven infrastructure for secondary use of EHR data: the SHARPn project. J. Biomed. Inform. 45, 763–771 (2012)CrossRefGoogle Scholar
  39. 39.
    Reform of EU Data Protection Rules, Website, 2015. Online at http://ec.europa.eu/justice/data-protection/reform/index_en.htm, visited 18 Dec 2015
  40. 40.
    N. Regola, N.V. Chawla, Storing and using health data in a virtual private cloud. J. Med. Internet Res. 15, e63 (2013)CrossRefGoogle Scholar
  41. 41.
    G.K. Savova, J.J. Masanz, P.V. Ogren, et al., Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J. Am. Med. Inform. Assoc. 17, 507–513 (2010)CrossRefGoogle Scholar
  42. 42.
    U.K. Schneider, Sekundärnutzung klinischer Daten – Rechtliche Rahmenbedingungen, in Schriftenreihe der TMF, Band 12, Medizinisch Wissenschaftliche Verlagsgesellschaft (2015)Google Scholar
  43. 43.
    SHARP – Strategic Health IT Advanced Research Projects, Website, 2013. Online at https://www.healthit.gov/policy-researchers-implementers/strategic-health-it-advanced-research-projects-sharp, visited 18 Dec 2015
  44. 44.
    SHARPn – Secondary Use of EHR Data, Website, 2013. Online at https://www.healthit.gov/policy-researchers-implementers/secondary-use-ehr-data, visited 18 Dec 2015
  45. 45.
    C.P. Shen, C. Jigjidsuren, S. Dorjgochoo, et al., A data-mining framework for transnational healthcare system. J. Med. Syst. 36, 2565–2575 (2012)CrossRefGoogle Scholar
  46. 46.
    Sicheres Cloud-basiertes Datenmanagement im Umfeld der klinischen Forschung: Project Webpages, Website, 2014. Online at http://www.cloudi-o.de, visited 18 Dec 2015
  47. 47.
    SkIDentity – Trusted Identities for the Cloud, Website, 2015. Online at https://www.skidentity.de/en/home/, visited 18 Dec 2015
  48. 48.
    K. Tomanek, P. Daumke, F. Enders, et al., An interactive de-identification-system, in Proceedings of the GMDS 2013 (2013)Google Scholar
  49. 49.
    TREC Medical Records Track, Website, 2015. Online at https://www.i2b2.org/NLP/, visited 18 Dec 2015
  50. 50.
    TREC Medical Records Track, Website, 2015. Online at http://trec.nist.gov/data/medical.html, visited 18 Dec 2015
  51. 51.
    TRESOR – Trusted Ecosystem for Standardized and Open Cloud-Based Resources: Project Webpages, Website, 2015. Online at http://www.cloud-tresor.de, visited 18 Dec 2015
  52. 52.
    Trusted Cloud Projekt, Website, 2015. Online at https://www.trusted-cloud.de/projekt, visited 18 Dec 2015
  53. 53.
    UIMA – Unstructured Information Management Architecture, Website, 2015. Online at http://uima.apache.org/, visited 18 Dec 2015
  54. 54.
    O. Uzuner, I. Solti, E. Cadag, Extracting medication information from clinical text. J. Am Med. Inform. Assoc. 17, 514–518 (2010)CrossRefGoogle Scholar
  55. 55.
    Ö. Uzuner, B.R. South, S. Shen, S.L. DuVall, 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. J. Am. Med. Inform. Assoc. 18, 552–556 (2011)CrossRefGoogle Scholar
  56. 56.
    E.M. Voorhees, W. Hersh, Overview of the TREC 2012 medical records track, in The Twenty-First Text REtrieval Conference (TREC 2012) Proceedings, ed. by E. Voorhees, L. Buckland (2012)Google Scholar
  57. 57.
    X. Wang, G. Hripcsak, M. Markatou, C. Friedman, Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study. J. Am. Med. Inform. Assoc. 16, 328–337 (2009)CrossRefGoogle Scholar
  58. 58.
    C. Wang, K. Ren, W. Lou, J. Li, Toward publicly auditable secure cloud data storage services. IEEE Netw. 24, 19–24 (2010)CrossRefGoogle Scholar
  59. 59.
    C. Wang, S.S.M. Chow, Q. Wang, K. Ren, W. Lou, Privacy-preserving public auditing for secure cloud storage. IEEE Trans. Comput. 62, 362–375 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  60. 60.
    H. Xu, S.P. Stenner, S. Doan, et al., MedEx: a medication information extraction system for clinical narratives. J. Am. Med. Inform. Assoc. 17, 19–24 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Juliane Fluck
    • 1
    Email author
  • Philipp Senger
    • 1
  • Wolfgang Ziegler
    • 1
  • Steffen Claus
    • 1
  • Horst Schwichtenberg
    • 1
  1. 1.Fraunhofer Institute for Algorithms and Scientific Computing SCAISankt AugustinGermany

Personalised recommendations