Advertisement

Properties of Definite Bethe–Salpeter Eigenvalue Problems

  • Meiyue Shao
  • Chao Yang
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 117)

Abstract

The Bethe–Salpeter eigenvalue problem is solved in condense matter physics to estimate the absorption spectrum of solids. It is a structured eigenvalue problem. Its special structure appears in other approaches for studying electron excitation in molecules or solids also. When the Bethe–Salpeter Hamiltonian matrix is definite, the corresponding eigenvalue problem can be reduced to a symmetric eigenvalue problem. However, its special structure leads to a number of interesting spectral properties. We describe these properties that are crucial for developing efficient and reliable numerical algorithms for solving this class of problems.

Notes

Acknowledgements

The authors thank Ren-Cang Li for helpful discussions. Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research.

References

  1. 1.
    Bai, Z., Li, R.C.: Minimization principles for the linear response eigenvalue problem I: theory. SIAM J. Matrix Anal. Appl. 33(4), 1075–1100 (2012). doi:10.1137/110838960 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bai, Z., Li, R.C.: Minimization principles for the linear response eigenvalue problem II: computation. SIAM J. Matrix Anal. Appl. 34(2), 392–416 (2013). doi:10.1137/110838972 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benner, P., Fassbender, H., Yang, C.: Some remarks on the complex J-symmetric eigenproblem. Preprint MPIMD/15–12, Max Planck Institute Magdeburg. Available from http://www.mpi-magdeburg.mpg.de/preprints/ (2015)
  4. 4.
    Bhatia, R., Kittaneh, F.: Notes on matrix arithmetic–geometric mean inequalities. Linear Algebra Appl. 308, 203–211 (2000). doi:10.1016/S0024-3795(00)00048-3 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dancoff, S.M.: Non-adiabatic meson theory of nuclear forces. Phys. Rev. 78(4), 382–385 (1950). doi:10.1103/PhysRev.78.382 CrossRefzbMATHGoogle Scholar
  6. 6.
    Davidson, E.R.: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real symmetric matrices. J. Comput. Phys. 17(1), 87–94 (1975). doi:10.1016/0021-9991(75)90065-0 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gohberg, I., Lancaster, P., Rodman, L.: Matrices and Indefinite Scalar Products. Operator Theory: Advances and Applications, vol. 8. Birkhäuser, Basel (1983)Google Scholar
  8. 8.
    Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001). doi:10.1137/S1064827500366124 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kressner, D., Miloloža Pandur, M., Shao, M.: An indefinite variant of LOBPCG for definite matrix pencils. Numer. Algorithms 66(4), 681–703 (2014). doi:10.1007/s11075-013-9754-3 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Liang, X., Li, R.C.: Extensions for Wielandt’s min–max principles for positive semi-definite pencils. Linear Multilinear Algebra 62(8), 1032–1048 (2014). doi:10.1080/03081087.2013.803242 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mathias, R.: Quadratic residual bounds for the Hermitian eigenvalue problem. SIAM J. Matrix Anal. Appl. 19(2), 541–550 (1998). doi:10.1137/S0895479896310536 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Nakatsukasa, Y.: Perturbation behavior of a multiple eigenvalue in generalized Hermitian eigenvalue problems. BIT Numer. Math. 50, 109–121 (2010). doi:10.1007/s10543-010-0254-8 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Nakatsukasa, Y.: Eigenvalue perturbation bounds for Hermitian block tridiagonal matrices. Appl. Numer. Math. 62, 67–78 (2012). doi:10.1016/j.apnum.2011.09.010 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Parlett, B.N.: The Symmetric Eigenvalue Problem. Classics in Applied Mathematics, vol. 20. SIAM, Philadelphia, PA (1998). Corrected reprint of the 1980 originalGoogle Scholar
  15. 15.
    Salpeter, E.E., Bethe, H.A.: A relativistic equation for bounded-state problems. Phys. Rev. 84(6), 1232–1242 (1951). doi:10.1103/PhysRev.84.1232 CrossRefzbMATHGoogle Scholar
  16. 16.
    Shao, M., H. da Jornada, F., Yang, C., Deslippe, J., Louie, S.G.: Structure preserving parallel algorithms for solving the Bethe–Salpeter eigenvalue problem. Linear Algebra Appl. 488, 148–167 (2016). doi:10.1016/j.laa.2015.09.036
  17. 17.
    Stewart, G.W., Sun, J.: Matrix Perturbation Theory. Academic, Boston, MA (1990)zbMATHGoogle Scholar
  18. 18.
    Tamm, I.Y.: Relativistic interaction of elementary particles. J. Phys. (USSR) 9, 449–460 (1945)Google Scholar
  19. 19.
    Thouless, D.J.: Vibrational states of nuclei in the random phase approximation. Nucl. Phys. 22, 78–95 (1961). doi:10.1016/0029-5582(61)90364-9 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Veselić, K.: Damped Oscillations of Linear Systems—A Mathematical Introduction. Lecture Notes in Mathematics, vol. 2023. Springer, Heidelberg (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations