Skip to main content

A Parallel Bisection and Inverse Iteration Solver for a Subset of Eigenpairs of Symmetric Band Matrices

  • Conference paper
  • First Online:
Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing (EPASA 2015)

Abstract

The tridiagonalization and its back-transformation for computing eigenpairs of real symmetric dense matrices are known to be the bottleneck of the execution time in parallel processing owing to the communication cost and the number of floating-point operations. To overcome this problem, we focus on real symmetric band eigensolvers proposed by Gupta and Murata since their eigensolvers are composed of the bisection and inverse iteration algorithms and do not include neither the tridiagonalization of real symmetric band matrices nor its back-transformation. In this paper, the following parallel solver for computing a subset of eigenpairs of real symmetric band matrices is proposed on the basis of Murata’s eigensolver: the desired eigenvalues of the target band matrices are computed directly by using parallel Murata’s bisection algorithm. The corresponding eigenvectors are computed by using block inverse iteration algorithm with reorthogonalization, which can be parallelized with lower communication cost than the inverse iteration algorithm. Numerical experiments on shared-memory multi-core processors show that the proposed eigensolver is faster than the conventional solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Anderson, E., Bai, Z., Bischof, C., Blackford, L., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. SIAM, Philadelphia, PA (1999)

    Book  MATH  Google Scholar 

  2. Auckenthaler, T., Blum, V., Bungartz, H.J., Huckle, T., Johanni, R., Krämer, L., Lang, B., Lederer, H., Willems, P.: Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations. Parallel Comput. 37(12), 783–794 (2011)

    Article  Google Scholar 

  3. Auckenthaler, T., Bungartz, H.J., Huckle, T., Krämer, L., Lang, B., Willems, P.: Developing algorithms and software for the parallel solution of the symmetric eigenvalue problem. J. Comput. Sci. 2(3), 272–278 (2011)

    Article  Google Scholar 

  4. Ballard, G., Demmel, J., Knight, N.: Avoiding communication in successive band reduction. ACM Trans. Parallel Comput. 1(2), 11:1–11:37 (2015)

    Google Scholar 

  5. Barlow, J.L., Smoktunowicz, A.: Reorthogonalized block classical Gram-Schmidt. Numer. Math. 123(3), 1–29 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Barth, W., Martin, R., Wilkinson, J.: Calculation of the eigenvalues of a symmetric tridiagonal matrix by the method of bisection. Numer. Math. 9(5), 386–393 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bischof, C., Sun, X., Lang, B.: Parallel tridiagonalization through two-step band reduction. In: Proceedings of the Scalable High-Performance Computing Conference, pp. 23–27. IEEE, New York (1994)

    Google Scholar 

  8. Bischof, C.H., Lang, B., Sun, X.: A framework for symmetric band reduction. ACM Trans. Math. Softw. 26(4), 581–601 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Blackford, L.S., Demmel, J., Dongarra, J., Duff, I., Hammarling, S., Henry, G., Heroux, M., Kaufman, L., Lumsdaine, A., Petitet, A., Pozo, R., Remington, K., Whaley, R.C.: An updated set of basic linear algebra subprograms (BLAS). ACM Trans. Math. Softw. 28(2), 135–151 (2002)

    Article  MathSciNet  Google Scholar 

  10. Chatelin, F.: Eigenvalues of Matrices. SIAM, Philadelphia, PA (2012)

    Book  Google Scholar 

  11. Golub, G.H., van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)

    MATH  Google Scholar 

  12. Gupta, K.K.: Eigenproblem solution by a combined Sturm sequence and inverse iteration technique. Int. J. num. Meth. Eng. 7(1), 17–42 (1973)

    Article  MATH  Google Scholar 

  13. Hasegawa, H.: Symmetric band eigenvalue solvers for vector computers and conventional computers (in Japanese). J. Inf. Process. 30(3), 261–268 (1989)

    Google Scholar 

  14. Ishigami, H., Kimura, K., Nakamura, Y.: A new parallel symmetric tridiagonal eigensolver based on bisection and inverse iteration algorithms for shared-memory multi-core processors. In: 2015 Tenth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), pp. 216–223. IEEE, New York (2015)

    Google Scholar 

  15. Kahan, W.: Accurate eigenvalues of a symmetric tridiagonal matrix. Technical Report, Computer Science Dept. Stanford University (CS41) (1966)

    Google Scholar 

  16. Katagiri, T., Vömel, C., Demmel, J.W.: Automatic performance tuning for the multi-section with multiple eigenvalues method for symmetric tridiagonal eigenproblems. In: Applied Parallel Computing. State of the Art in Scientific Computing. Lecture Notes in Computer Science, vol. 4699, pp. 938–948. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  17. Kaufman, L.: Band reduction algorithms revisited. ACM Trans. Math. Softw. 26(4), 551–567 (2000)

    Article  MathSciNet  Google Scholar 

  18. Lo, S., Philippe, B., Sameh, A.: A multiprocessor algorithm for the symmetric tridiagonal eigenvalue problem. SIAM J. Sci. Stat. Comput. 8(2), s155–s165 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Martin, R., Wilkinson, J.: Solution of symmetric and unsymmetric band equations and the calculation of eigenvectors of band matrices. Numer. Math. 9(4), 279–301 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  20. Murata, K.: Reexamination of the standard eigenvalue problem of the symmetric matrix. II The direct sturm inverse-iteration for the banded matrix (in Japanese). Research Report of University of Library and Information Science 5(1), 25–45 (1986)

    Google Scholar 

  21. Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia, PA (1998)

    Book  MATH  Google Scholar 

  22. Peters, G., Wilkinson, J.: The calculation of specified eigenvectors by inverse iteration. In: Bauer, F. (ed.) Linear Algebra. Handbook for Automatic Computation, vol. 2, pp. 418–439. Springer, Berlin, Heidelberg (1971)

    Chapter  Google Scholar 

  23. Simon, H.: Bisection is not optimal on vector processors. SIAM J. Sci. Stat. Comput. 10(1), 205–209 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yokozawa, T., Takahashi, D., Boku, T., Sato, M.: Parallel implementation of a recursive blocked algorithm for classical Gram-Schmidt orthogonalization. In: Proceedings of the 9th International Workshop on State-of-the-Art in Scientific and Parallel Computing (PARA 2008) (2008)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to reviewers for their helpful comments. In this work, we used the supercomputer of ACCMS, Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Ishigami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ishigami, H., Hasegawa, H., Kimura, K., Nakamura, Y. (2017). A Parallel Bisection and Inverse Iteration Solver for a Subset of Eigenpairs of Symmetric Band Matrices. In: Sakurai, T., Zhang, SL., Imamura, T., Yamamoto, Y., Kuramashi, Y., Hoshi, T. (eds) Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing. EPASA 2015. Lecture Notes in Computational Science and Engineering, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-62426-6_3

Download citation

Publish with us

Policies and ethics