Gisplay- Extensible Web API for Thematic Maps with WebGL

  • Diogo Cardoso
  • Rui Alves
  • João Moura Pires
  • Fernando Birra
  • Ricardo Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10409)

Abstract

This paper analyses and shows the need of a client side web API devoted to present and explore spatial information through thematic maps. We define a set of requirements for such API, most notably the ability to process datasets with many millions of points, allowing full interactivity, providing a high level of abstraction and defining clear paths for easy extension at many levels. The Gisplay API is implemented using WebGL, enabling the required speed for full interactive thematic maps with millions of points. Such claims are experimentally demonstrated. Gisplay already provides 4 types of thematic maps and very detailed discussion is presented showing the high level of abstraction and the different mechanisms to extend it. This extensibility is based on a modular architecture which includes an intermediate API that deals with WebGL complexity.

Keywords

Thematic maps WebGL Spatial data visualisation 

Notes

Acknowledgments

This work has been supported by FCT - Fundação para a Ciência e Tecnologia MCTES, UID/CEC/04516/2013 (NOVA LINCS).

References

  1. 1.
    Bédard, Y., Rivest, S., Proulx, M.J.: Spatial Online Analytical Processing (SOLAP): concepts, architectures, and solutions. In: Data Warehouses and OLAP: Concepts, Architectures, and Solutions, pp. 298–319. Idea Group Inc. (2007)Google Scholar
  2. 2.
    Cardoso, D.: Gisplay: A High-Level Client-Side API for Interactive Thematic Maps using WebGL. Master’s thesis, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa (2016)Google Scholar
  3. 3.
    Harrower, M., Brewer, C.A.: ColorBrewer.org: an online tool for selecting colour schemes for maps. Cartogr. J. 40(1), 27–37 (2003)CrossRefGoogle Scholar
  4. 4.
    Jankowski, P., Andrienko, N., Andrienko, G.: Map-centred exploratory approach to multiple criteria spatial decision making. Int. J. Geogr. Inf. Sci. 15(2), 101–127 (2001)CrossRefGoogle Scholar
  5. 5.
    Kraak, M.J., Ormeling, F.: Cartography: Visualization of Spatial Data. Guilford Press, New York City (2011)Google Scholar
  6. 6.
    Ledermann, F., Gartner, G.: Mapmap. js: a data-driven web mapping API for thematic cartography. In: Proceedings of the 27th International Cartographic Conference (ICC2015) (2015)Google Scholar
  7. 7.
    Perrot, A., Bourqui, R., Hanusse, N., Lalanne, F., Auber, D.: Large interactive visualization of density functions on big data infrastructure. In: 2015 IEEE 5th Symposium on Large Data Analysis and Visualization (LDAV), pp. 99–106. IEEE, October 2015. doi: 10.1109/ldav.2015.7348077
  8. 8.
    Silva, R.A., Pires, J.M., Santos, M.Y., Datia, N.: Enhancing exploratory analysis by summarizing spatiotemporal events across multiple levels of detail. In: Sarjakoski, T., Santos, M.Y., Sarjakoski, L.T. (eds.) Geospatial Data in a Changing World. LNGC, pp. 219–238. Springer, Cham (2016). doi: 10.1007/978-3-319-33783-8_13 Google Scholar
  9. 9.
    Ward, M., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques, and Applications, 2nd edn. Taylor & Francis, Abingdon (2015). https://books.google.pt/books?id=BonfoAEACAAJ MATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Diogo Cardoso
    • 1
  • Rui Alves
    • 1
  • João Moura Pires
    • 1
  • Fernando Birra
    • 1
  • Ricardo Silva
    • 1
  1. 1.NOVA Laboratory for Computer Science and Informatics, Departamento de InformáticaFaculdade de Ciências e Tecnologia, Universidade Nova de LisboaCaparicaPortugal

Personalised recommendations