Advertisement

Automated Simulation of Gas-Phase Reactions on Distributed and Cloud Computing Infrastructures

  • Sergio Rampino
  • Loriano Storchi
  • Antonio Laganà
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10406)

Abstract

The Grid Empowered Molecular Simulator GEMS enabling fully ab initio virtual experiments through rigorous theoretical and computational procedures has been upgraded with a novel scheme for automated generation of three-atom potential energy surfaces. The scheme is based on a space-reduced formulation of the so-called bond-order variables allowing for a balanced representation of the attractive and repulsive regions of a diatom configuration space. The deployment and use of the resulting upgraded machinery on distributed and cloud computing infrastructures is also discussed.

Keywords

Molecular simulator Reaction dynamics Potential energy surface Bond order Distributed and cloud computing 

Notes

Acknowledgments

The authors acknowledge financial support from EGI Inspire contract 261323, MIUR PRIN grant 2008 KJX4 SN_003, ESA ESTEC 21790/08/NL/HE and ITN-EJD-642294_TCCM. Thanks are also due to CINECA and COMPCHEM for computer time allocation, and to Mirko Mariotti, Giuseppe Vitillaro, Manuel Ciangottini and Daniele Spiga for technical support and helpful discussions.

References

  1. 1.
    Laganà, A., Riganelli, A., Gervasi, O.: On the structuring of the computational chemistry virtual organization COMPCHEM. In: Gavrilova, M., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 665–674. Springer, Heidelberg (2006). doi: 10.1007/11751540_70 CrossRefGoogle Scholar
  2. 2.
    Costantini, A.: Laganà: towards a CMMST VRC virtual team project report. https://documents.egi.eu/public/RetrieveFile?docid=2221&version=1&filename=CMMSTVT-Report_Final_6.0.pdf. Accessed 28 Apr 2017
  3. 3.
    Costantini, A., Gervasi, O., Laganà, A.: A fault tolerant workflow for CPU demanding calculations. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6784, pp. 387–396. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21931-3_30 CrossRefGoogle Scholar
  4. 4.
    Manuali, C., Laganà, A.: A grid credit system empowering virtual research communities sustainability. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6784, pp. 397–411. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21931-3_31 CrossRefGoogle Scholar
  5. 5.
    Manuali, C., Laganà, A., Rampino, S.: GriF: a grid framework for a web service approach to reactive scattering. Comput. Phys. Commun. 181(7), 1179–1185 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Manuali, C., Laganà, A.: GriF: a new collaborative framework for a web service approach to grid empowered calculations. Future Generation Comput. Syst. 27(3), 315–318 (2011)CrossRefGoogle Scholar
  7. 7.
    Laganà, A., Costantini, A., Gervasi, O., Faginas Lago, N., Manuali, C., Rampino, S.: COMPCHEM: progress towards GEMS a grid empowered molecular simulator and beyond. J. Grid Comput. 8(4), 571–586 (2010)CrossRefGoogle Scholar
  8. 8.
    Esposito, F., Garcia, E., Laganà, A.: Comparisons and scaling rules between N + N\(_2\) and N\(_2\) + N\(_2\) collision induced dissociation cross sections from atomistic studies. Plasma Sources Sci. Technol. 26(4), 045005 (2017)CrossRefGoogle Scholar
  9. 9.
    Faginas Lago, N., Albertí, M., Laganà, A., Lombardi, A., Pacifici, L., Costantini, A.: The molecular stirrer catalytic effect in methane ice formation. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 585–600. Springer, Cham (2014). doi: 10.1007/978-3-319-09144-0_40 Google Scholar
  10. 10.
    Lombardi, A., Faginas-Lago, N., Pacifici, L., Grossi, G.: Energy transfer upon collision of selectively excited CO\(_2\) molecules: state-to-state cross sections and probabilities for modeling of atmospheres and gaseous flows. J. Chem. Phys. 143(3), 034307 (2015)CrossRefGoogle Scholar
  11. 11.
    Rampino, S.: Workows and data models for atom diatom quantum reactive scattering calculations on the Grid. Ph.D. thesis, Università degli Studi di Perugia (2011)Google Scholar
  12. 12.
    Rampino, S., Faginas Lago, N., Laganà, A., Huarte-Larrañaga, F.: An extension of the grid empowered molecular simulator to quantum reactive scattering. J. Comput. Chem. 33(6), 708–714 (2012)CrossRefGoogle Scholar
  13. 13.
    Rampino, S., Skouteris, D., Laganà, A., Garcia, E.: A comparison of the isotope effect for the N + N\(_2\) reaction calculated on two potential energy surfaces. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008. LNCS, vol. 5072, pp. 1081–1093. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69839-5_82 CrossRefGoogle Scholar
  14. 14.
    Laganà, A., Faginas Lago, N., Rampino, S., Huarte Larrañaga, F., García, E.: Thermal rate coefficients in collinear versus bent transition state reactions: the N + N\(_2\) case study. Phys. Scr. 78(5), 058116 (2008)CrossRefzbMATHGoogle Scholar
  15. 15.
    Rampino, S., Pirani, F., Garcia, E., Laganà, A.: A study of the impact of long range interactions on the reactivity of N + N\(_2\) using the Grid Empowered Molecular Simulator GEMS. Int. J. Web Grid Serv. 6(2), 196–212 (2010)CrossRefGoogle Scholar
  16. 16.
    Laganà, A., Rampino, S.: A grid empowered virtual versus real experiment for the barrierless Li + FH \(\rightarrow \) LiF + H reaction. In: Murgante, B., et al. (eds.) ICCSA 2014. LNCS, vol. 8579, pp. 571–584. Springer, Cham (2014). doi: 10.1007/978-3-319-09144-0_39 Google Scholar
  17. 17.
    Rossi, E., Evangelisti, S., Laganà, A., Monari, A., Rampino, S., Verdicchio, M., Baldridge, K.K., Bendazzoli, G.L., Borini, S., Cimiraglia, R., Angeli, C., Kallay, P., Lüthi, H.P., Ruud, K., Sanchez-Marin, J., Scemama, A., Szalay, P.G., Tajti, A.: Code interoperability and standard data formats in quantum chemistry and quantum dynamics: the Q5/D5Cost data model. J. Comput. Chem. 35(8), 611–621 (2014)CrossRefGoogle Scholar
  18. 18.
    Rampino, S., Monari, A., Rossi, E., Evangelisti, S., Laganà, A.: A priori modeling of chemical reactions on computational grid platforms: workflows and data models. Chem. Phys. 398, 192–198 (2012)CrossRefGoogle Scholar
  19. 19.
    EGI.eu: The European Grid Infrastructure. http://www.egi.eu/. Accessed 15 Mar 2017
  20. 20.
    Bowman, J.M.: Reduced dimensionality theory of quantum reactive scattering. J. Phys. Chem. 95(13), 4960–4968 (1991)CrossRefGoogle Scholar
  21. 21.
    Rampino, S., Skouteris, D., Laganà, A., García, E., Saracibar, A.: A comparison of the quantum state-specific efficiency of N + N\(_2\) reaction computed on different potential energy surfaces. Phys. Chem. Chem. Phys. 11, 1752–1757 (2009)CrossRefGoogle Scholar
  22. 22.
    Rampino, S., Garcia, E., Pirani, F., Laganà, A.: Accurate quantum dynamics on grid platforms: some effects of long range interactions on the reactivity of N + N\(_2\). In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6019, pp. 1–12. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12189-0_1 CrossRefGoogle Scholar
  23. 23.
    Rampino, S., Skouteris, D., Laganà, A.: The O + O\(_2\) reaction: quantum detailed probabilities and thermal rate coefficients. Theor. Chem. Acc. Theory Comput. Model. 123(3/4), 249–256 (2009)CrossRefGoogle Scholar
  24. 24.
    Rampino, S., Skouteris, D., Laganà, A.: Microscopic branching processes: the O + O\(_2\) reaction and its relaxed potential representations. Int. J. Quantum Chem. 110(2), 358–367 (2010)CrossRefGoogle Scholar
  25. 25.
    Laganà, A., Garcia, E., Paladini, A., Casavecchia, P., Balucani, N.: The last mile of molecular reaction dynamics virtual experiments: the case of the OH(n = 1–10) + CO(j = 0–3) reaction. Faraday Discuss. 157, 415–436 (2012)CrossRefGoogle Scholar
  26. 26.
    Laganá, A., Balucani, N., Crocchianti, S., Casavecchia, P., Garcia, E., Saracibar, A.: An extension of the molecular simulator GEMS to calculate the signal of crossed beam experiments. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6784, pp. 453–465. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21931-3_35 CrossRefGoogle Scholar
  27. 27.
    Garcia, E., Saracibar, A., Laganà, A.: On the anomaly of the quasiclassical product distributions of the OH + CO \(\rightarrow \) H + CO\(_2\) reaction. Theoret. Chem. Acc. 128(4), 727–734 (2011)CrossRefGoogle Scholar
  28. 28.
    Rampino, S.: Configuration-space sampling in potential energy surface fitting: a space-reduced bond-order grid approach. J. Phys. Chem. A 120(27), 4683–4692 (2016)CrossRefGoogle Scholar
  29. 29.
    Rampino, S., Pastore, M., Garcia, E., Pacifici, L., Laganà, A.: On the temperature dependence of the rate coefficient of formation of C\(_2^+\) from C + CH\(^+\). Mon. Not. R. Astron. Soc. 460(3), 2368–2375 (2016)CrossRefGoogle Scholar
  30. 30.
    Pacifici, L., Pastore, M., Garcia, E., Laganà, A., Rampino, S.: A dynamics investigation of the C + CH\(^+\) \(\rightarrow \) C\(_2^+\) + H reaction on an ab initio bond-order like potential. J. Phys. Chem. A 120(27), 5125–5135 (2016)CrossRefGoogle Scholar
  31. 31.
    Mell, P., Grance, T.: The NIST definition of cloud computing. http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf. Accessed 15 Mar 2017
  32. 32.
    Magoulés, F., Roux, F.X., Houzeaux, G.: Parallel Scientific Computing. Wiley-ISTE, London (2015)CrossRefGoogle Scholar
  33. 33.
    OpenStack: Open source software for creating private and public clouds. https://www.openstack.org/. Accessed 15 Mar 2017
  34. 34.
    Storchi, L., Tarantelli, F., Laganà, A.: Computing molecular energy surfaces on a grid. In: Gavrilova, M., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3980, pp. 675–683. Springer, Heidelberg (2006). doi: 10.1007/11751540_71 CrossRefGoogle Scholar
  35. 35.
    INDIGO-Datacloud: Towards a sustainable european PaaS-based cloud solution for e-Science. https://www.indigo-datacloud.eu/. Accessed 15 Mar 2017
  36. 36.
    Aguado, A., Tablero, C., Paniagua, M.: Global fit of ab initio potential energy surfaces I. Triatomic systems. Comput. Phys. Commun. 108(23), 259–266 (1998)CrossRefzbMATHGoogle Scholar
  37. 37.
    Aguado, A., Paniagua, M.: A new functional form to obtain analytical potentials of triatomic molecules. J. Chem. Phys. 96(2), 1265–1275 (1992)CrossRefGoogle Scholar
  38. 38.
    Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference, ACM 1968, pp. 517–524. ACM, New York (1968)Google Scholar
  39. 39.
    Collins, M.A.: Molecular potential-energy surfaces for chemical reaction dynamics. Theoret. Chem. Acc. 108(6), 313–324 (2002)CrossRefGoogle Scholar
  40. 40.
    Werner, H.J., Knowles, P.J., Knizia, G., Manby, F.R., Schütz, M., Celani, P., Korona, T., Lindh, R., Mitrushenkov, A., Rauhut, G., Shamasundar, K.R., Adler, T.B., Amos, R.D., Bernhardsson, A., Berning, A., Cooper, D.L., Deegan, M.J.O., Dobbyn, A.J., Eckert, F., Goll, E., Hampel, C., Hesselmann, A., Hetzer, G., Hrenar, T., Jansen, G., Köppl, C., Liu, Y., Lloyd, A.W., Mata, R.A., May, A.J., McNicholas, S.J., Meyer, W., Mura, M.E., Nicklass, A., O’Neill, D.P., Palmieri, P., Pflüger, K., Pitzer, R., Reiher, M., Shiozaki, T., Stoll, H., Stone, A.J., Tarroni, R., Thorsteinsson, T., Wang, M., Wolf, A.: Molpro, version 2010.1, a package of ab initio programs (2010). http://www.molpro.net. Accessed 15 Mar 2017
  41. 41.
    Dunning, T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007–1023 (1989)CrossRefGoogle Scholar
  42. 42.
    Skouteris, D., Castillo, J.F., Manolopoulos, D.E.: ABC: a quantum reactive scattering program. Comput. Phys. Commun. 133(1), 128–135 (2000)CrossRefzbMATHGoogle Scholar
  43. 43.
    Liu, B.: Ab initio potential energy surface for linear h\(_3\). J. Chem. Phys. 58(5), 1925–1937 (1973)CrossRefGoogle Scholar
  44. 44.
    Siegbahn, P., Liu, B.: An accurate three-dimensional potential energy surface for H\(_3\). J. Chem. Phys. 68(5), 2457–2465 (1978)CrossRefGoogle Scholar
  45. 45.
    Truhlar, D.G., Horowitz, C.J.: Functional representation of Liu and Siegbahn’s accurate ab initio potential energy calculations for H + H\(_2\). J. Chem. Phys. 68(5), 2466–2476 (1978)CrossRefGoogle Scholar
  46. 46.
    Truhlar, D.G., Horowitz, C.J.: Erratum: functional representation of Liu and Siegbahn’s accurate abinitio potential energy calculations for H + H\(_2\). J. Chem. Phys. 71(3), 1514–1514 (1979)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sergio Rampino
    • 1
  • Loriano Storchi
    • 2
  • Antonio Laganà
    • 3
  1. 1.Scuola Normale SuperiorePisaItaly
  2. 2.Dipartimento di FarmaciaUniversità degli Studi ‘G. D’Annunzio’ChietiItaly
  3. 3.Dipartimento di Chimica, Biologia e BiotecnologieUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations