Advertisement

Bayesian Neural Network Models in the Appraisal of Real Estate Properties

  • Vincenzo Del Giudice
  • Pierfrancesco De Paola
  • Fabiana Forte
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10406)

Abstract

Neural Networks (NNs) had wide interest due to empirical achievements on a wide range of learning issues. NNs are highly expressive models that can learn complex function approximations from input/output, with a particular ability to train them on massive data sets with stochastic optimization. The Bayesian approach to NNs can potentially avoid some of the problems of stochastic optimization. The use of Bayesian learning is well suited to the problem of real estate appraisals, in fact, Bayesian inference techniques are very interesting in order to deal with a small and noisy sample in the field of probabilistic inference carried out with neural model. For this purpose it has here been experimented a NNs model with Bayesian learning. The output distribution has been calculated operating a numerical integration on the weights space with the help of Markov Chain Hybrid Monte Carlo Method.

Keywords

Neural Networks Models Bayesian approach Markov Chain Hybrid Monte Carlo Method Real estate appraisals 

References

  1. 1.
    Brotman, B.A.: Linear and non linear appraisals models. Appraisal J. 58, 249–253 (1990)Google Scholar
  2. 2.
    Bishop, C.M.: Bayesian methods for neural networks, Technical report, Department of Computer Science and Applied Mathematics, Aston University, Birmingham (1995)Google Scholar
  3. 3.
    Bishop, C.M.: Neural Network for Pattern Recognition, 2nd edn. Oxford University Press, New York (1996)zbMATHGoogle Scholar
  4. 4.
    Bishop, C.M.: Neural network: a pattern recognition perspective. In: Fiesler, E., Beale, R. (eds.) Handbook of Neural Computation. Oxford University Press, New York (1996)Google Scholar
  5. 5.
    Bishop, C.M., Qazac, C.S., Regression with input-dependent noise: a bayesian treatment. In: Advances in Neural Information Processing Systems, vol. 9. MIT Press (1997)Google Scholar
  6. 6.
    Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT 2010, pp. 177–186. Physica-Verlag HD, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Buntine, W.L., Weigend, A.S.: Bayesian back-propagation. Complex Syst. 5, 603–643 (1991)zbMATHGoogle Scholar
  8. 8.
    Child, P.D., Ott, S.H., Riddiough, T.J., Incomplete information, exercise policy and valuation of claims on noisy real assets, Discussion paper, MIT Real Estate Center, Cambridge, USA (1997)Google Scholar
  9. 9.
    Del Giudice, V., De Paola, P.: Undivided real estate shares: appraisal and interactions with capital markets. Appl. Mech. Mater. 584–586, 2522–2527 (2014). Trans Tech PubblicationsCrossRefGoogle Scholar
  10. 10.
    Del Giudice, V., De Paola, P.: Spatial analysis of residential real estate rental market. In: d’Amato, M., Kauko, T. (eds.) Advances in Automated Valuation Modeling. SSDC, vol. 86, pp. 9455–9459. Springer, Cham (2017). doi: 10.1007/978-3-319-49746-4 Google Scholar
  11. 11.
    Del Giudice, V., De Paola, P., Forte, F.: The appraisal of office towers in bilateral monopoly’s market: evidence from application of Newton’s physical laws to the Directional Centre of Naples. Int. J. Appl. Eng. Res. 11(18), 9455–9459 (2016). R.I.PGoogle Scholar
  12. 12.
    Giudice, V., Evangelista, P., Paola, P., Forte, F.: Knowledge Management and Intellectual Capital in the Logistics Service Industry. In: Lehner, F., Fteimi, N. (eds.) KSEM 2016. LNCS, vol. 9983, pp. 1–12. Springer, Cham (2016). doi: 10.1007/978-3-319-47650-6_30 Google Scholar
  13. 13.
    Giudice, V., Manganelli, B., Paola, P.: Depreciation Methods for Firm’s Assets. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9788, pp. 214–227. Springer, Cham (2016). doi: 10.1007/978-3-319-42111-7_17 CrossRefGoogle Scholar
  14. 14.
    Manganelli, B., Paola, P., Giudice, V.: Linear programming in a multi-criteria model for real estate appraisal. In: Gervasi, O., et al. (eds.) ICCSA 2016. LNCS, vol. 9786, pp. 182–192. Springer, Cham (2016). doi: 10.1007/978-3-319-42085-1_14 CrossRefGoogle Scholar
  15. 15.
    Giudice, V., Manganelli, B., Paola, P.: Spline smoothing for estimating hedonic housing price models. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2015. LNCS, vol. 9157, pp. 210–219. Springer, Cham (2015). doi: 10.1007/978-3-319-21470-2_15 CrossRefGoogle Scholar
  16. 16.
    Del Giudice, V., De Paola, P.: Geoadditive models for property market. Appl. Mech. Mater. 584–586, 2505–2509 (2014). Trans Tech PubblicationsCrossRefGoogle Scholar
  17. 17.
    Del Giudice, V., De Paola, P.: The effects of noise pollution produced by road traffic of Naples Beltway on residential real estate values. Appl. Mech. Mater. 587–589, 2176–2182 (2014). Trans Tech PubblicationsCrossRefGoogle Scholar
  18. 18.
    Del Giudice, V., De Paola, P., Manganelli, B., Forte, F.: The monetary valuation of environmental externalities through the analysis of real estate prices. Sustainability 9(2), 229 (2017). MDPI SwitzerlandCrossRefGoogle Scholar
  19. 19.
    Del Giudice, V., De Paola, P., Cantisani, G.B.: Rough set theory for real estate appraisals: an application to directional district of Naples. Buildings 7(1), 12 (2017). MDPI SwitzerlandCrossRefGoogle Scholar
  20. 20.
    Del Giudice, V., De Paola, P., Cantisani, G.B.: Valuation of real estate investments through fuzzy logic. Buildings 7(1), 26 (2017). MDPICrossRefGoogle Scholar
  21. 21.
    Del Giudice, V., De Paola, P., Forte, F.: Using genetic algorithms for real estate appraisal. Buildings 7(2), 31 (2017). MDPICrossRefGoogle Scholar
  22. 22.
    Del Giudice, V., Manganelli, B., De Paola, P.: Hedonic analysis of housing sales prices with semiparametric methods. Int. J. Agri. Environ. Inf. Syst. 8(2), 65–77 (2017). IGI Global PublishingCrossRefGoogle Scholar
  23. 23.
    Duane, S., Kennedy, A.D., Pendeleton, B.J., Roweth, D.: Hybrid Monte Carlo. Phys. Lett. B 195(2), 216–222 (1987)CrossRefGoogle Scholar
  24. 24.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition, 2nd edn. Academic Press, San Diego (1990)zbMATHGoogle Scholar
  25. 25.
    Graves, A.: Practical variational inference for neural networks. Adv. Neural. Inf. Process. Syst. 24, 2348–2356 (2011)Google Scholar
  26. 26.
    Hinton, G., Camp, D.V.: Keeping neural networks simple by minimizing the description length of the weights. In: Proceedings of the Sixth Annual Conference on Computational Learning Theory, pp. 5–13 (1993)Google Scholar
  27. 27.
    Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)CrossRefGoogle Scholar
  28. 28.
    Jaynes, E.T.: Bayesian methods: general background. In: Justice, H.D. (eds.) Maximum Entropy and Bayesian Methods in Applied Statistics. Cambridge University Press (1986)Google Scholar
  29. 29.
    Jylanki, P., Nummenmaa, A., Vehtari, A.: Expectation propagation for neural networks with sparsity-promoting priors. J. Mach. Learn. Res. 15(1), 1849–1901 (2014)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Jordan, M.L., Bishop, C.M.: Neural networks. In: Tucker, A. (ed.) Handbook of Computer Science. CRC Press (1996)Google Scholar
  31. 31.
    MacKay, D.J.C.: Bayesian interpolation. Neural Comput. 4(3), 720–736 (1992)CrossRefzbMATHGoogle Scholar
  32. 32.
    MacKay, D.J.C.: The evidence framework applied to classification networks. Neural Comput. 4(5), 720–736 (1992)CrossRefGoogle Scholar
  33. 33.
    Morano, P., Tajani, F.: The break-even analysis applied to urban renewal investments: a model to evaluate the share of social housing financially sustainable for private investors. Habitat Int. 59, 10–20 (2017)CrossRefGoogle Scholar
  34. 34.
    Morano, P., Tajani, F.: Estimative analysis of a segment of the bare ownership market of residential property. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013. LNCS, vol. 7974, pp. 433–443. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39649-6_31 CrossRefGoogle Scholar
  35. 35.
    Neal, R.M.: Bayesian training of back-propagation networks by the hybrid Monte Carlo method, Technical report, Dept. of Computer Science, University of Toronto, Canada (1993)Google Scholar
  36. 36.
    Neal, R.M.: Probabilistic inference using Markov Chain Monte Carlo method, Technical report, Dept. of Computer Science, University of Toronto, Canada (1993)Google Scholar
  37. 37.
    Neal, R.M.: Bayesian learning for neural network, Ph.D. thesis, University of Toronto, Canada (1994)Google Scholar
  38. 38.
    Rumelhart, D.E., Hintont, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)CrossRefzbMATHGoogle Scholar
  39. 39.
    Soudry, D., Hubara, I., Meir, R.: Expectation backpropagation: Parameter-free training of multilayer neural networks with continuous or discrete weights. Adv. Neural. Inf. Process. Syst. 27, 963–971 (2014)Google Scholar
  40. 40.
    William, C.K.I., Qazac, C., Bishop, C.M., Zhu, H.: On the relationship between bayesian error bars and the input data density. In: Proceedings of 4th International Conference on Artificial Neural Networks, University of Cambridge (1995)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Vincenzo Del Giudice
    • 1
  • Pierfrancesco De Paola
    • 1
  • Fabiana Forte
    • 2
  1. 1.University of Naples “Federico II”NaplesItaly
  2. 2.University of Campania “Luigi Vanvitelli”AversaItaly

Personalised recommendations