Advertisement

Continuous Extensions for Structural Runge–Kutta Methods

  • Alexey S. EreminEmail author
  • Nikolai A. Kovrizhnykh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10405)

Abstract

The so-called structural methods for systems of partitioned ordinary differential equations studied by Olemskoy are considered. An ODE system partitioning is based on special structure of right-hand side dependencies on the unknown functions. The methods are generalization of Runge–Kutta–Nyström methods and as the latter are more efficient than classical Runge–Kutta schemes for a wide range of systems. Polynomial interpolants for structural methods that can be used for dense output and in standard approach to solve delay differential equations are constructed. The proposed methods take fewer stages than the existing most general continuous Runge–Kutta methods. The orders of the constructed methods are checked with constant step integration of test delay differential equations. Also the global error to computational costs ratios are compared for new and known methods by solving the problems with variable time-step.

Keywords

Continuous methods Delay differential equations Runge–Kutta methods Structural partitioning 

References

  1. 1.
    Arushanyan, O.B., Zaletkin, S.F.: Chislennoe Reshenie Obyknovennykh Differentsialnykh Uravnenii na Fortrane (Numerical Solution of Ordinary Differential Equations Using FORTRAN). Moscow State Univ., Moscow (1990). (in Russian)zbMATHGoogle Scholar
  2. 2.
    Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations, 1st edn. Oxford Science Publications, Clarendon Press, Oxford (2003)CrossRefzbMATHGoogle Scholar
  3. 3.
    Butcher, J.C.: On Runge-Kutta processes of high order. J. Austral. Math. Soc. 4(2), 179–194 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comp. Appl. Math. 6, 19–26 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Eremin, A.S.: Modifikatsiya teorii pomechennykh dereviev dly stukturnogo metoda integrirovaniya sistem ODU (Labelled trees theory modification for structural method of solving ODE systems). Vestn. St-Petersburg Uni. (2), 15–21 (2009). (in Russian)Google Scholar
  6. 6.
    Eremin, A.S., Olemskoy, I.V.: Functional continuous Runge-Kutta methods for special systems. In: AIP Conference Proceedings, vol. 1738, p. 100003 (2016)Google Scholar
  7. 7.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  8. 8.
    Hofer, E.: A partially implicit method for large stiff systems of ODEs with only few equations introducing small time-constants. SIAM J. Numer. Anal. 13(5), 645–663 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ketcheson, D.I., MacDonald, C., Ruuth, S.J.: Spatially partitioned embedded Runge-Kutta methods. SIAM J. Numer. Anal. 51(5), 2887–2910 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Maset, S., Torelli, L., Vermiglio, R.: Runge-Kutta methods for retarded functional differential equations. Math. Model. Meth. Appl. Sci. 15(8), 1203–1251 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    McLachlan, R., Ryland, B., Sun, Y.: High order multisymplectic Runge-Kutta methods. SIAM J. Sci. Comput. 36(5), A2199–A2226 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Olemskoy, I.V.: Fifth-order four-stage method for numerical integration of special systems. Comput. Math. Math. Phys. 42(8), 1135–1145 (2002)MathSciNetGoogle Scholar
  13. 13.
    Olemskoy, I.V.: Structural approach to the design of explicit one-stage methods. Comput. Math. Math. Phys. 43(7), 918–931 (2003)MathSciNetGoogle Scholar
  14. 14.
    Olemskoy, I.V.: A fifth-order five-stage embedded method of the Dormand-Prince type. Comput. Math. Math. Phys. 45(7), 1140–1150 (2005)MathSciNetGoogle Scholar
  15. 15.
    Olemskoy, I.V.: Modifikatsiya algoritma vydeleniya strukturnykh osobennostei (Modification of structural properties detection algorithm). Vestn. St-Petersburg Uni. (2), 55–64 (2006). (in Russian)Google Scholar
  16. 16.
    Olemskoy, I.V.: Metody Integrirovaniya System Strukturno Razdelyonnykh Differentsialnykh Uravnenii (Integration of Structurally Partitioned Systems of Ordinary Differential Equations). Saint-Petersburg State Univ., Saint-Petersburg (2009). (in Russian)Google Scholar
  17. 17.
    Owren, B., Zennaro, M.: Derivation of efficient continuous explicit Runge-Kutta methods. SIAM J. Sci. Stat. Comput. 13(6), 1488–1501 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Paul, C.A.H.: A test set of functional differential equations. Technical report 243, Manchester Centre for Computational Mathematics, University of Manchester, February 1994Google Scholar
  19. 19.
    Sandu, A., Günther, M.: A generalized-structure approach to additive Runge-Kutta methods. SIAM J. Numer. Anal. 53(1), 17–42 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sandu, A., Günther, M.: Multirate generalized additive Runge-Kutta methods. Numer. Math. 133(3), 497–524 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Shampine, L.F., Reichelt, M.W.: The matlab ODE suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wang, D., Xiao, A., Li, X.: Parametric symplectic partitioned Runge-Kutta methods with energy-preserving properties for Hamiltonian systems. Comput. Phys. Comm. 184(2), 303–310 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Saint-Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations