Linear Representation of Transversal Matroids and Gammoids Parameterized by Rank

  • Pranabendu Misra
  • Fahad Panolan
  • M. S. Ramanujan
  • Saket Saurabh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10392)

Abstract

Given a bipartite graph \(G=(U\uplus V,E)\), a linear representation of the transversal matroid associated with G on the ground set U, can be constructed in randomized polynomial time. In fact one can get a linear representation deterministically in time \(2^{{\mathcal {O}}(m^2n)}\), where \(m=\vert U\vert \) and \(n=|V|\), by looping through all the choices made in the randomized algorithm. Other important matroids for which one can obtain linear representation deterministically in time similar to the one for transversal matroids include gammoids and strict gammoids. Strict gammoids are duals of transversal matroids and gammoids are restrictions of strict gammoids. We give faster deterministic algorithms to construct linear representations of transversal matroids, gammoids and strict gammoids. All our algorithms run in time \(\left( {\begin{array}{c}m\\ r\end{array}}\right) m^{{\mathcal {O}}(1)}\), where m is the cardinality of the ground set and r is the rank of the matroid. In the language of parameterized complexity, we give an \(\mathsf{XP}\) algorithm for finding linear representations of transversal matroids, gammoids and strict gammoids parameterized by the rank of the given matroid.

References

  1. 1.
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 3rd edn. Springer, Berlin (2005)MATHGoogle Scholar
  2. 2.
    Fomin, F.V., Golovach, P.A., Panolan, F., Saurabh, S.: Editing to connected f-degree graph. In: 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, 17–20 February 2016, Orléans, France, pp. 36:1–36:14 (2016)Google Scholar
  3. 3.
    Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Representative sets of product families. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 443–454. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44777-2_37 Google Scholar
  4. 4.
    Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative families with applications in parameterized and exact algorithms. J. ACM 63(4), 29:1–29:60 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Goyal, P., Misra, P., Panolan, F., Philip, G., Saurabh, S.: Finding even subgraphs even faster. In: 35th IARCS Annual Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2015, 16–18 December 2015, Bangalore, India, pp. 434–447 (2015)Google Scholar
  6. 6.
    Hols, E.C., Kratsch, S.: A randomized polynomial kernel for subset feedback vertex set. In: 33rd Symposium on Theoretical Aspects of Computer Science, STACS 2016, 17–20 February 2016, Orléans, France, pp. 43:1–43:14 (2016)Google Scholar
  7. 7.
    Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2, 225–231 (1973)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ingleton, A., Piff, M.: Gammoids and transversal matroids. J. Comb. Theory Ser. B 15(1), 51–68 (1973)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Comput. Complex. 13(1–2), 1–46 (2004)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: new tools for kernelization. In: Proceedings of the 53rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 450–459 (2012)Google Scholar
  11. 11.
    Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial kernel for odd cycle transversal. ACM Trans. Algorithms 10(4), 20:1–20:15 (2014)MathSciNetGoogle Scholar
  12. 12.
    Lokshtanov, D., Misra, P., Panolan, F., Saurabh, S.: Deterministic truncation of linear matroids. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134, pp. 922–934. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47672-7_75 CrossRefGoogle Scholar
  13. 13.
    Marx, D.: A parameterized view on matroid optimization problems. Theor. Comput. Sci. 410(44), 4471–4479 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Oxley, J.G.: Matroid Theory. Oxford Graduate Texts in Mathematics, vol. 21, 2nd edn. Oxford University Press, Cambridge (2010)MATHGoogle Scholar
  15. 15.
    Shachnai, H., Zehavi, M.: Representative families: a unified tradeoff-based approach. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 786–797. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-44777-2_65 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pranabendu Misra
    • 1
  • Fahad Panolan
    • 1
  • M. S. Ramanujan
    • 2
  • Saket Saurabh
    • 1
    • 3
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.TU WienViennaAustria
  3. 3.The Institute of Mathematical SciencesHBNIChennaiIndia

Personalised recommendations