Pure Nash Equilibria in Restricted Budget Games

  • Maximilian Drees
  • Matthias Feldotto
  • Sören Riechers
  • Alexander Skopalik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10392)

Abstract

In budget games, players compete over resources with finite budgets. For every resource, a player has a specific demand and as a strategy, he chooses a subset of resources. If the total demand on a resource does not exceed its budget, the utility of each player who chose that resource equals his demand. Otherwise, the budget is shared proportionally. In the general case, pure Nash equilibria (NE) do not exist for such games. In this paper, we consider the natural classes of singleton and matroid budget games with additional constraints and show that for each, pure NE can be guaranteed. In addition, we introduce a lexicographical potential function to prove that every matroid budget game has an approximate pure NE which depends on the largest ratio between the different demands of each individual player.

References

  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and weighted congestion games. Theor. Comput. Sci. 410(17), 1552–1563 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, E., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. SIAM J. Comput. 38(4), 1602–1623 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Byde, A., Polukarov, M., Jennings, N.R.: Games with congestion-averse utilities. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 220–232. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04645-2_20 CrossRefGoogle Scholar
  4. 4.
    Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Approximate pure Nash equilibria in weighted congestion games: existence, efficient computation, and structure. ACM Trans. Econ. Comput. 3(1), 2 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion games. Games Econ. Behav. 71(2), 315–327 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Drees, M., Feldotto, M., Riechers, S., Skopalik, A.: On existence and properties of approximate pure Nash equilibria in bandwidth allocation games. In: Proceedings of the 8th International Symposium on Algorithmic Game Theory, pp. 178–189 (2015)Google Scholar
  7. 7.
    Drees, M., Riechers, S., Skopalik, A.: Budget-restricted utility games with ordered strategic decisions. In: Proceedings of the 7th International Symposium on Algorithmic Game Theory, pp. 110–121 (2014)Google Scholar
  8. 8.
    Gairing, M., Klimm, M.: Congestion games with player-specific costs revisited. In: Vöcking, B. (ed.) SAGT 2013. LNCS, vol. 8146, pp. 98–109. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41392-6_9 CrossRefGoogle Scholar
  9. 9.
    Hansknecht, C., Klimm, M., Skopalik, A.: Approximate pure Nash equilibria in weighted congestion games. In: Proceedings of the 17th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pp. 242–257. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)Google Scholar
  10. 10.
    Harks, T., Klimm, M.: On the existence of pure Nash equilibria in weighted congestion games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 79–89. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14165-2_8 CrossRefGoogle Scholar
  11. 11.
    Harks, T., Klimm, M.: Congestion games with variable demands. Mathemat. Oper. Res. 41(1), 255–277 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Jain, K., Mahdian, M.: Cost sharing. In: Algorithmic Game Theory, pp. 385–410 (2007)Google Scholar
  13. 13.
    Kollias, K., Roughgarden, T.: Restoring pure equilibria to weighted congestion games. ACM Trans. Econ. Comput. 3(4), 21 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Mavronicolas, M., Milchtaich, I., Monien, B., Tiemann, K.: Congestion games with player-specific constants. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 633–644. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74456-6_56 CrossRefGoogle Scholar
  15. 15.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econ. Behav. 13(1), 111–124 (1996)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143 (1996)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2(1), 65–67 (1973)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Shapley, L.S.: A Value for n-Person Games. Technical report, DTIC Document (1952)Google Scholar
  19. 19.
    Voice, T., Polukarov, M., Byde, A., Jennings, N.R.: On the impact of strategy and utility structures on congestion-averse games. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 600–607. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10841-9_61 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Maximilian Drees
    • 1
  • Matthias Feldotto
    • 2
  • Sören Riechers
    • 2
  • Alexander Skopalik
    • 2
  1. 1.Departement of Applied MathematicsUniversity of TwenteEnschedeThe Netherlands
  2. 2.Department of Computer Science and Heinz Nixdorf InstitutePaderborn UniversityPaderbornGermany

Personalised recommendations