Advertisement

The Stuttgart IT Architecture for Manufacturing

An Architecture for the Data-Driven Factory
  • Laura KassnerEmail author
  • Christoph Gröger
  • Jan Königsberger
  • Eva Hoos
  • Cornelia Kiefer
  • Christian Weber
  • Stefan Silcher
  • Bernhard Mitschang
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 291)

Abstract

The global conditions for manufacturing are rapidly changing towards shorter product life cycles, more complexity and more turbulence. The manufacturing industry must meet the demands of this shifting environment and the increased global competition by ensuring high product quality, continuous improvement of processes and increasingly flexible organization. Technological developments towards smart manufacturing create big industrial data which needs to be leveraged for competitive advantages. We present a novel IT architecture for data-driven manufacturing, the Stuttgart IT Architecture for Manufacturing (SITAM). It addresses the weaknesses of traditional manufacturing IT by providing IT systems integration, holistic data analytics and mobile information provisioning. The SITAM surpasses competing reference architectures for smart manufacturing because it has a strong focus on analytics and mobile integration of human workers into the smart production environment and because it includes concrete recommendations for technologies to implement it, thus filling a granularity gap between conceptual and case-based architectures. To illustrate the benefits of the SITAM’s prototypical implementation, we present an application scenario for value-added services in the automotive industry.

Keywords

IT architecture Data analytics Big data Smart manufacturing Industrie 4.0 

Notes

Acknowledgements

The authors would like to thank the German Research Foundation (DFG) as well as Daimler AG for financial support of this project as part of the Graduate School of Excellence advanced Manufacturing Engineering (GSaME) at the University of Stuttgart.

References

  1. 1.
    Westkämper, E.: Towards the Re-industrialization of Europe: A Concept for Manufacturing for 2030. Springer Science & Business Media, Heidelberg (2013)Google Scholar
  2. 2.
    MacDougall, W.: Industrie 4.0: Smart Manufacturing for the Future (2014)Google Scholar
  3. 3.
    Davis, J., Edgar, T., Porter, J., Bernaden, J., Sarli, M.: Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput. Chem. Eng. 47, 145–156 (2012)CrossRefGoogle Scholar
  4. 4.
    Shi, J., Wan, J., Yan, H., Suo, H.: A survey of cyber-physical systems. In: 2011 International Conference on Wireless Communications and Signal Processing, Piscataway, NJ, pp. 1–6. IEEE (2011)Google Scholar
  5. 5.
    Brettel, M., Friederichsen, N., Keller, M., Rosenberg, M.: How virtualization, decentralization and network building change the manufacturing landscape: an industry 4.0 perspective. Int. J. Sci. Eng. Technol. 8, 37–44 (2014)Google Scholar
  6. 6.
    Kemper, H.G., Baars, H., Lasi, H.: An integrated business intelligence framework. closing the gap between IT support for management and for production. In: Rausch, P., Sheta, A.F., Ayesh, A. (eds.) Business Intelligence and Performance Management. Advanced Information and Knowledge Processing, pp. 13–26. Springer, London (2013). doi: 10.1007/978-1-4471-4866-1_2 CrossRefGoogle Scholar
  7. 7.
    Gölzer, P., Cato, P., Amberg, M.: Data processing requirements of industry 4.0 - use cases for big data applications. In: Proceedings of the 23rd European Conference on Information Systems (ECIS), Paper 61 (2015)Google Scholar
  8. 8.
    ISA: Enterprise-Control System Integration. ANSI/ISA 95.00.01-2000, Instrument Society of America (2000)Google Scholar
  9. 9.
    Gröger, C., Kassner, L., Hoos, E., Königsberger, J., Kiefer, C., Silcher, S., Mitschang, B.: The data-driven factory. Agile, learning and human-centric manufacturing. In: Proceedings of the 18th International Conference on Enterprise Information Systems (ICEIS), Scitepress (2016)Google Scholar
  10. 10.
    Vogel-Heuser, B., Kegel, G., Bender, K., Wucherer, K.: Global information architecture for industrial automation. Automatisierungstechnische Praxis 51, 108–115 (2009)Google Scholar
  11. 11.
    Minguez, J., Lucke, D., Jakob, M., Constantinescu, C., Mitschang, B.: Introducing SOA into production environments - the manufacturing service bus. In: Sihn, W., Becker, T., Kolev, I. (eds.) Proceedings of the 43rd CIRP International Conference on Manufacturing Systems (CMS), pp. 1117–1124. Neuer Wissenschaftlicher Verlag, Wien (2010)Google Scholar
  12. 12.
    Bracht, U., Hackenberg, W., Bierwirth, T.: A monitoring approach for the operative CKD logistics. wt Werkstattstechnik Online 101, 122–127 (2011)Google Scholar
  13. 13.
    Groover, M.P.: Automation, Production Systems, and Computer-Integrated Manufacturing, 3rd edn. Prentice Hall, Upper Saddle River (2008)Google Scholar
  14. 14.
    Hjelmervik, O.R., Wang, K.: Knowledge management in manufacturing: the soft side of knowledge systems. In: Wang, K., Kovacs, G.L., Wozny, M., Fang, M. (eds.) PROLAMAT 2006. IIFIP, vol. 207, pp. 89–94. Springer, Boston (2006). doi: 10.1007/0-387-34403-9_10 CrossRefGoogle Scholar
  15. 15.
    Zuehlke, D.: Smart factory - towards a factory-of-things. Ann. Rev. Control 34, 129–138 (2010)CrossRefGoogle Scholar
  16. 16.
    Weyrich, M., Ebert, C.: Reference architectures for the internet of things. IEEE Softw. 33, 112–116 (2016)CrossRefGoogle Scholar
  17. 17.
    EFFRA: Platforms for connected factories of the future. Technical report, Communications Networks, Content and Technology Directorate-General DG CONNECT, A3 and European Factories of the Future Research Association (EFFRA) (2015)Google Scholar
  18. 18.
    VDI/VDE, ZVEI: Reference Architecture Model Industrie 4.0 (RAMI4.0). Technical report, Plattform Industrie 4.0 (2015)Google Scholar
  19. 19.
    Lin, S.W., Miller, B., Durand, J., Joshi, R., Didier, P., Chigani, A., Torenbeek, R., Duggal, D., Martin, R., Bleakley, G., King, A., Molina, J., Schrecker, S., Lembree, R., Soroush, H., Garbis, J., Crawford, M., Harper, E., Raman, K., Witten, B.: Industrial internet reference architecture. Technical report 1.7, Industrial Internet Consortium (2015)Google Scholar
  20. 20.
    Otto, B., Auer, S., Cirullies, J., Jürjens, J., Menz, N., Schon, J., Wenzel, S.: Industrial Data Space - Digitale Souveränitt für Daten. Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V, Technical report (2016)Google Scholar
  21. 21.
    Holtewert, P., Wutzke, R., Seidelmann, J., Bauernhansl, T.: Virtual fort knox - federative, secure and cloud-based platform for manufacturing. In: Cunha, P.F.D.C. (ed.) Economic Development and Wealth through Globally Competitive Manufacturing Systems, Procedia CIRP., Red Hook, NY, Curran, vol. 7, pp. 527–532 (2014)Google Scholar
  22. 22.
    Papazoglou, M.P., van den Heuvel, W.J., Mascolo, J.E.: A reference architecture and knowledge-based structures for smart manufacturing networks. IEEE Softw. 32, 61–69 (2015)CrossRefGoogle Scholar
  23. 23.
    Erl, T.: Service Oriented Architecture: Principles of Service Design. The Prentice Hall Service-oriented Computing Series from Thomas Erl. Prentice Hall, Upper Saddle River (2008)Google Scholar
  24. 24.
    Silcher, S., Dinkelmann, M., Minguez, J., Mitschang, B.: Advanced product lifecycle management by introducing domain-specific service buses. In: Cordeiro, J., Maciaszek, L.A., Filipe, J. (eds.) ICEIS 2012. LNBIP, vol. 141, pp. 92–107. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40654-6_6 CrossRefGoogle Scholar
  25. 25.
    Evans, J.R., Lindner, C.H.: Business analytics: the next frontier for decision sciences. Decis. Line 43, 4–6 (2012)Google Scholar
  26. 26.
    Gröger, C., Schwarz, H., Mitschang, B.: The manufacturing knowledge repository. consolidating knowledge to enable holistic process knowledge management in manufacturing. In: Hammoudi, S. (ed.) Proceedings of the 16th International Conference on Enterprise Information Systems, Lisbon, Portugal, 39–51 April 2014, pp. 27–30. [S.l.], SciTePress (2014)Google Scholar
  27. 27.
    Aggarwal, C.C., Zhai, C.: An introduction to text mining. In: Aggarwal, C.C., Zhai, C. (eds.) Mining Text Data, pp. 1–10. Springer, New York (2012)CrossRefGoogle Scholar
  28. 28.
    Kassner, L., Gröger, C., Mitschang, B., Westkämper, E.: Product life cycle analytics - next generation data analytics on structured and unstructured data. In: Teti, R. (ed.) 9th CIRP Conference on Intelligent Computation in Manufacturing Engineering - CIRPICME 14, Procedia CIRP., Red Hook, NY, Curran, vol. 33, pp. 35–40 (2015)Google Scholar
  29. 29.
    Kassner, L., Mitschang, B.: Exploring text classification for messy data: an industry use case for domain-specific analytics. In: Pitoura, E., Maabout, S., Koutrika, G., Marian, A., Tanca, L., Manolescu, I., Stefanidis, K. (eds.) Proceedings of the 19th International Conference on Extending Database Technology (EDBT), OpenProceedings.org, pp. 491–502 (2016)Google Scholar
  30. 30.
    Clevenger, N.C.: IPad in the Enterprise: Developing and Deploying Business Applications. Wiley, Indianapolis (2011)Google Scholar
  31. 31.
    Hoos, E., Gröger, C., Mitschang, B.: Mobile apps in engineering: a process-driven analysis of business potentials and technical challenges. In: Teti, R. (ed.) 9th CIRP Conference on Intelligent Computation in Manufacturing Engineering - CIRPICME 14, Procedia CIRP., Red Hook, NY, Curran, vol. 33 (2015)Google Scholar
  32. 32.
    Daniel, F., Matera, M.: Mashups: Concepts, Models and Architectures. Data-Centric Systems and Applications. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  33. 33.
    Francese, R., Risi, M., Tortora, G., Tucci, M.: Visual mobile computing for mobile end-users. IEEE Trans. Mob. Comput. 15, 1033–1046 (2015)CrossRefGoogle Scholar
  34. 34.
    Whitman, M.E., Mattord, H.J.: Principles of Information Security, 3rd edn. Thomson Course Technology, Boston (2007)Google Scholar
  35. 35.
    Meehan, M.: SOA adoption marked by broad failure and wild success (2008)Google Scholar
  36. 36.
    Königsberger, J., Silcher, S., Mitschang, B.: SOA-GovMM: a meta model for a comprehensive SOA governance repository. In: Joshi, J.B.D. (ed.) Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration, Piscataway, NJ, pp. 187–194. IEEE (2014)Google Scholar
  37. 37.
    Sebastian-Coleman, L.: Measuring Data Quality for Ongoing Improvement: A Data Quality Assessment Framework. Elsevier Science, Burlington (2013)Google Scholar
  38. 38.
    Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manag. Inf. Syst. 12, 5–33 (1996)CrossRefGoogle Scholar
  39. 39.
    International Organization for Standardization: Industrial Automation Systems and Integration (1994)Google Scholar
  40. 40.
    International Organization for Standardization: Industrial Automation Systems and Integration - JT File Format Specification for 3D Visualization (2016)Google Scholar
  41. 41.
    Stonebraker, M.: Newsql: an alternative to NoSql and old SQL for new OLTP apps. Commun. ACM (2011)Google Scholar
  42. 42.
    Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime Data Systems. Manning Publications Co., Greenwich (2015)Google Scholar
  43. 43.
    Nalepa, G., Bobek, S.: Rule-based solution for context-aware reasoning on mobile devices. Comput. Sci. Inf. Syst. 11, 171–193 (2014)CrossRefGoogle Scholar
  44. 44.
    Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F.A., Tanca, L.: A data-oriented survey of context models. ACM SIGMOD Rec. 36, 19 (2007)Google Scholar
  45. 45.
    Königsberger, J., Mitschang, B.: A semantically-enabled SOA governance repository. In: Proceedings of the 2016 IEEE 17th International Conference on Information Reuse and Integration. IEEE (2016)Google Scholar
  46. 46.
    Gröger, C., Schwarz, H., Mitschang, B.: Prescriptive analytics for recommendation-based business process optimization. In: Abramowicz, W., Kokkinaki, A. (eds.) BIS 2014. LNBIP, vol. 176, pp. 25–37. Springer, Cham (2014). doi: 10.1007/978-3-319-06695-0_3 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Laura Kassner
    • 1
    Email author
  • Christoph Gröger
    • 1
    • 2
  • Jan Königsberger
    • 1
  • Eva Hoos
    • 1
  • Cornelia Kiefer
    • 1
  • Christian Weber
    • 1
  • Stefan Silcher
    • 1
    • 3
  • Bernhard Mitschang
    • 1
  1. 1.Graduate School of Excellence Advanced Manufacturing EngineeringUniversity of StuttgartStuttgartGermany
  2. 2.Robert Bosch GmbHGerlingen-SchillerhöheGermany
  3. 3.eXXcellent solutions gmbhStuttgartGermany

Personalised recommendations