Advertisement

Mangroves and People: Local Ecosystem Services in a Changing Climate

  • Mark Huxham
  • Amrit Dencer-Brown
  • Karen Diele
  • Kandasamy Kathiresan
  • Ivan Nagelkerken
  • Caroline Wanjiru
Chapter

Abstract

Mangrove forests provide many services, some of which are used mostly or exclusively by local people, often the relatively poor and marginalised. Here, such ‘local ecosystem services’ are defined as those benefitting people living zero to tens of kilometres from a forest. The provision of fuel, timber, fodder, crustacean, fin-fish and shoreline protection services are reviewed, and their relationships with global patterns in biodiversity and poverty are examined. Higher floral and faunal diversity in the Indo-West-Pacific, compared with the Atlantic-East-Pacific, correlate with a greater range of species exploited for fuel, timber, crustaceans and coastal protection. Whilst poverty is a strong predictor for reliance on some local services, such as fuel wood, it is not related to others, such as fin-fish; hence, local people may be ‘liberated’ from reliance on some services by increased income but use others to generate that wealth. The vulnerability of these services to climate change depends on local geomorphological, biological and social factors. Forests with good supplies of sediment and fresh water, and fauna with relatively simple life cycles, will probably be more resilient. Greater wealth (or investment) may permit people to shift from capture to aquaculture fisheries and to show flexibility in the face of changing or reduced service provision.

Keywords

Local ecosystem service Mangrove Fuel wood Coastal protection Crustacean Fisheries Poverty Climate change 

Notes

Acknowledgements

Thanks to Sarah Murray for help with Fig. 8.1 and to Victor Rivera-Monroy for his help with editorial work. Essam Mohammed and an anonymous reviewer provided helpful comments on an earlier draft.

References

  1. Ahammad R, Nandy P, Husnain P (2013) Unlocking ecosystem based adaptation opportunities in coastal Bangladesh. J Coast Conserv 17:833–840CrossRefGoogle Scholar
  2. Alongi DM (2015) The impact of climate change on mangrove. Curr Clim Chang Rep 1:30–39CrossRefGoogle Scholar
  3. Altieri AH, Gedan KB (2015) Climate change and dead zones. Glob Chang Biol 21:1395–1406CrossRefPubMedGoogle Scholar
  4. Atheull AN, Din N, Longonje SN, Koedam N, Dahdouh-Guebas F (2009) Commercial activities and subsistence utilization of mangrove forests around the Wouri estuary and the Douala-Edea reserve (Cameroon). J Ethnobiol Ethnomed 5:35CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ball MC, Cochrane MJ, Rawson HM (1997) Growth and water use of the mangroves Rhizophora apiculata and R-stylosa in response to salinity and humidity under ambient and elevated concentrations of atmospheric CO2. Plant Cell Environ 20:1158–1166CrossRefGoogle Scholar
  6. Barbier EB (2006) Natural barriers to natural disasters: replanting mangroves after the tsunami. Front Ecol Environ 6:124–131CrossRefGoogle Scholar
  7. Barbier EB, Koch EW, Silliman BR, Hacker SD, Wolanski E, Primavera J, Granek EF, Polasky S, Aswani S, Cramer LA, Stoms DM, Kennedy CJ, Bael D, Kappel CV, Perillo GME, Reed DJ (2008) Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319:321–323CrossRefPubMedGoogle Scholar
  8. Blanco JF, Estrada EA, Ortiz LF, Urrego LE (2012) Ecosystem-wide impacts of deforestation in mangroves: the Urabá Gulf (Colombian Caribbean) case study. ISRN EcolArticle ID 958709, 14 pages. doi: https://doi.org/10.5402/2012/958709
  9. Boucek RE, Rehage JS (2014) Climate extremes drive changes in functional community structure. Glob Chang Biol 20:1821–1831CrossRefPubMedGoogle Scholar
  10. Branch TA, DeJoseph BM, Ray LJ, Wagner CA (2013) Impacts of ocean acidification on marine seafood. Trends Ecol Evol 28:178–186CrossRefPubMedGoogle Scholar
  11. Brander L, Wagtendonk A, Hussain S, Mcvittie A, Verburg PH, De Groot RS, Van Der Ploeg S (2012) Ecosystem service values for mangroves in Southeast Asia: a meta-analysis and value transfer application. Ecosyst Serv 1(1):62–69CrossRefGoogle Scholar
  12. Briffa M, de la Haye K, Munday PL (2012) High CO2 and marine animal behaviour: potential mechanisms and ecological consequences. Mar Pollut Bull 64:1519–1528CrossRefPubMedGoogle Scholar
  13. Brown IW (1993) Mangrove crabs. In: Wright A, Hill L (eds) Nearshore marine resources of the South Pacific: information for fisheries management and development. Fisheries Agency, Honiara, pp 611–642Google Scholar
  14. Costanza R, Arge R, De Groot R, Farberk S, Grasso M, Hannon B, Limburg K, Naeem S, Neill RVO, Paruelo J, Raskin RG, Suttonkk P, Farber S, Sutton P (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  15. Crook DA, Lowe WH, Allendorf FW, Eros T, Finn DS, Gillanders BM, Hadwen WL, Harrod C, Hermoso V, Jennings S, Kilada RW, Nagelkerken I, Hansen MM, Page TJ, Riginos C, Fry B, Hughes JM (2015) Human effects on ecological connectivity in aquatic ecosystems: integrating scientific approaches to support management and mitigation. Sci Total Environ 534:52–64CrossRefPubMedGoogle Scholar
  16. Davis J, O’Grady AP, Dale A, Arthington AH, Gell PA, Driver PD, Bond N, Casanova M, Finlayson M, Watts R, Capon SJ, Nagelkerken I, Tingley R, Fry B, Page TJ, Specht A (2015) When trends intersect: the challenge of protecting freshwater ecosystems under multiple land use and hydrological intensification scenarios. Sci Total Environ 534:65–78CrossRefPubMedGoogle Scholar
  17. Di Nitto D, Neukermans G, Koedam N, Defever H, Pattyn F, Kairo JG, Dahdouh-Guebas F (2014) Mangroves facing climate change: landward migration potential in response to projected scenarios of sea level rise. Biogeosciences 11:857–871CrossRefGoogle Scholar
  18. Diele K, Araújo AR, Glaser M, Salzmann U (2010) Fishery of the mangrove crab Ucides cordatus in N-Brazil: first steps to successful co-management. In: Saint-Paul U, Schneider H (eds) Mangrove dynamics and management in North Brazil, Ecol Stud, vol 211. Springer, Heidelberg, pp 287–297CrossRefGoogle Scholar
  19. Diele K, Koch V, Saint-Paul U (2005) Population structure and catch composition of the exploited mangrove crab Ucides cordatus in the Caeté estuary, North Brazil: indications for overfishing? Aquat Living Resour 18:169–178CrossRefGoogle Scholar
  20. Ellison AM (2008) Managing mangroves with benthic biodiversity in mind: moving beyond roving banditry. J Sea Res 59:2–15CrossRefGoogle Scholar
  21. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432CrossRefGoogle Scholar
  22. FAO (2006) FISHSTAT plus: universal software for fishery statistical time series, version 2.3.1. FAO Fisheries Department, FisheryGoogle Scholar
  23. Field CD (1995) Impact of expected climate-change on mangroves. Hydrobiologia 295:75–81CrossRefGoogle Scholar
  24. Gattuso JP, Magnan A, Bille R, Cheung WWL, Howes EL, Joos F, Allemand D, Bopp L, Cooley SR, Eakin CM, Hoegh-Guldberg O, Kelly RP, Portner HO, Rogers AD, Baxter JM, Laffoley D, Osborn D, Rankovic A, Rochette J, Sumaila UR, Treyer S, Turley C (2015) Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349(6243):4722-1–4722-10CrossRefGoogle Scholar
  25. Gillanders BM, Elsdon TS, Halliday IA, Jenkins GP, Robins JB, Valesini FJ (2011) Potential effects of climate change on Australian estuaries and fish utilising estuaries: a review. Mar Freshw Res 62:1115–1131CrossRefGoogle Scholar
  26. Gillis LG, Bouma TJ, Jones CG, van Katwijk MM, Nagelkerken I, Jeuken CJL, Herman PMJ, Ziegler AD (2014) Potential for landscape-scale positive interactions among tropical marine ecosystems. Mar Ecol Prog Ser 503:289–303CrossRefGoogle Scholar
  27. Gilman EL, Ellison J, Duke NC, Field C (2008) Threats to mangroves from climate change and adaptation options: a review. Aqua Bot 89:237–250CrossRefGoogle Scholar
  28. Glaser M (2003) Interrelations between mangrove ecosystem, local economy and social sustainability in Caeté Estuary, North Brazil. Wetl Ecol Manag 11:265–272CrossRefGoogle Scholar
  29. Goessens A, Satyanarayana B, Van der Stocken T, Quispe Zuniga M, Mohd-Lokman H, Sulong I, Dahdouh-Guebas F (2014) Is Matang mangrove forest in Malaysia sustainably rejuvenating after more than a century of conservation and harvesting management? PLoS One 9(8):e105069.  https://doi.org/10.1371/journal.pone.0105069 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hare JA, Alexander MA, Fogarty MJ, Williams EH, Scott JD (2010) Forecasting the dynamics of a coastal fishery species using a coupled climate-population model. Ecol Appl 20:452–464CrossRefPubMedGoogle Scholar
  31. Hein L, van Koppen K, de Groot RS, van Ierland EC (2006) Spatial scales, stakeholders and the valuation of ecosystem services. Ecol Econ 57:209–228CrossRefGoogle Scholar
  32. Hutchison J, Spalding MZU, Ermgassen P (2014) The role of mangroves in fisheries enhancement. The Nature Conservancy and Wetlands International, Cambridge, UK, p 54Google Scholar
  33. Huxham M, Emerton L, Kairo J, Munyi F, Abdirizak H, Muriuki T, Nunan F, Briers RA (2015) Applying Climate Compatible Development and economic valuation to coastal management: a case study of Kenya’s mangrove forests. J Environ Manag 157:168–181CrossRefGoogle Scholar
  34. Huxham M, Kumara MP, Jayatissa LP, Krauss KW, Kairo J, Langat J, Mencuccini M, Skov MW, Kirui B (2010) Intra- and interspecific facilitation in mangroves may increase resilience to climate change threats. Philos Trans R Soc Lond B Biol Sci 365:2127–2135CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hylkema A, Vogelaar W, Meesters HWG, Nagelkerken I, Debrot AO (2015) Fish species utilization of contrasting sub-habitats distributed along an ocean-to-land environmental gradient in a tropical mangrove and seagrass lagoon. Estuar Coasts 38:1448–1465CrossRefGoogle Scholar
  36. Igulu MM, Nagelkerken I, Dorenbosch M, Grol MGG, Harborne AR, Kimirei IA, Mumby PJ, Olds AD, Mgaya YD (2014) Mangrove habitat use by juvenile reef fish: meta-analysis reveals that tidal regime matters more than biogeographic region. PLoS One 9(12):e114715.  https://doi.org/10.1371/journal.pone.0114715 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jallow BP, Barrow MKA, Leatherman SP (1996) Vulnerability of the coastal zone of The Gambia to sea level rise and development of response strategies and adaptation options. Clim Res 6:165–177CrossRefGoogle Scholar
  38. Kairo JG, Dahdouh-Guebas F, Gwada PO, Ochieng C, Koedam N (2002) Regeneration status of mangrove forests in Mida creek, Kenya: a compromised or secured future? Amb 31:562–568CrossRefGoogle Scholar
  39. Kathiresan K (2015) Ecology of mangroves. In: Ocean coast ecological. Scientific Publishers, Jodhpur, pp 169–207Google Scholar
  40. Kathiresan K, Rajendran N (2002) Fishery resources and economic gain in three mangrove areas on the southeast coast of India. Fish Manag Ecol 49:277–283CrossRefGoogle Scholar
  41. Khan AS, Ramachandran A, Usha N, Punitha S, Selvam V (2012) Predicted impact of the sea-level rise at Vellar-Coleroon estuarine region of Tamil Nadu coast in India: mainstreaming adaptation as a coastal zone management option. J Ocean Coast Manag 69:327–339CrossRefGoogle Scholar
  42. Kimirei IA, Nagelkerken I, Trommelen M, Blankers P, van Hoytema N, Hoeijmakers D, Huijbers CM, Mgaya YD, Rypel AL (2013) What drives ontogenetic niche shifts of fishes in coral reef ecosystems? Ecosystems 16:783–796CrossRefGoogle Scholar
  43. Kirwan ML, Mudd SM (2012) Response of salt-marsh carbon accumulation to climate change. Nat 489:550–553CrossRefGoogle Scholar
  44. Kituyi E, Marufu L, Huber BO, Wandiga SO, Jumba IO, Andreae M, Helas G (2001) Biofuel consumption rates and patterns in Kenya. Biomass Bioenergy 20:83–99CrossRefGoogle Scholar
  45. Koehn JD, Hobday AJ, Pratchett MS, Gillanders BM (2011) Climate change and Australian marine and freshwater environments, fishes and fisheries: synthesis and options for adaptation. Mar Freshw Res 62:1148–1164CrossRefGoogle Scholar
  46. Krauss KW, Lovelock CE, McKee KL, Lopez-Hoffman L, Ewe SML, Sousa WP (2008) Environmental drivers in mangrove establishment and early development: a review. Aquat Bot 89:105–127CrossRefGoogle Scholar
  47. Kridiborworn P, Chidthaisong A, Yuttitham M, Tripetchkul S (2012) Carbon sequestration by mangrove forest planted specifically for charcoal production In: Yeesarn, SamutSongkram. J Sustain Energy Environ 3:87–92Google Scholar
  48. Kumara MP, Jayatissa LP, Krauss KW, Phillips DH, Huxham M (2010) High mangrove density enhances surface accretion, surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 164:545–553CrossRefPubMedGoogle Scholar
  49. Lang’at JKS, Kirui BKY, Skov MW, Kairo JG, Mencuccini M, Huxham M (2013) Species mixing boosts root yield in mangrove trees. Oecologia 172:271–278CrossRefPubMedGoogle Scholar
  50. Van Lavieren H, Spalding M, Alongi DM, Kainuma M, Clüsener-godt M, Adeel Z (2012) Securing the future of mangroves. A Policy Brief. doi: http://www.inweh.unu.edu
  51. Lee SY (1998) Ecological role of grapsid crabs in mangrove ecosystems: a review. Mar Freshw Res 49:335–343CrossRefGoogle Scholar
  52. Locatelli T, Binet T, Kairo JG, King L, Madden S, Patenaude G, Upton C, Huxham M (2014) Turning the tide: how blue carbon and Payments for Ecosystem Services (PES) might help save mangrove forests. Amb 43:981–995CrossRefGoogle Scholar
  53. MacKenzie RA, Kryss CL (2013) Impacts of exotic mangroves and chemical eradication of mangroves on tide pool fish assemblages. Mar Ecol Prog Ser 472:219–237CrossRefGoogle Scholar
  54. Marschke M, Lykhim O, Kim N (2014) Can local institutions help sustain livelihoods in an era of fish declines and persistent environmental change? A Cambodian case study. Sustainability 6:2490–2505CrossRefGoogle Scholar
  55. McIvor A, Spencer T, Möller I (2012) Storm surge reduction by mangroves. Natural Coastal Protection Series. Report 2, CambridgeGoogle Scholar
  56. McLeod E, Hinkel J, Vafeidis AT, Nicholls RJ, Harvey N, Salm R (2010) Sea-level rise vulnerability in the countries of the Coral Triangle. Sustain Sci 5:207–222CrossRefGoogle Scholar
  57. McNally CG, Uchida E, Gold AJ (2011) The effect of a protected area on the tradeoffs between short-run and long-run benefits from mangrove ecosystems. Proc Natl Acad Sci U S A 108:13945–13950CrossRefPubMedPubMedCentralGoogle Scholar
  58. Meynecke JO, Lee SY, Duke NC, Warnken J (2006) Effect of rainfall as a component of climate change on estuarine fish production in Queensland, Australia. Estuar Coast Shelf Sci 69:491–504CrossRefGoogle Scholar
  59. Mimura N, Nunn P (1998) trends of beach erosion and shoreline protection in rural Fiji. J Coast Res 14:37–46Google Scholar
  60. Munji CA, Bele MY, Idinoba ME, Sonwa DJ (2014) Floods and mangrove forests, friends or foes? Perceptions of relationships and risks in Cameroon coastal mangroves. Estuar Coast Shelf Sci 140:67–75CrossRefGoogle Scholar
  61. Nagelkerken I, Munday PL (2016) Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Glob Chang Biol 22:974–989CrossRefPubMedGoogle Scholar
  62. Nagelkerken I, Connell SD (2015) Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc Natl Acad Sci U S A 112(43):13272–13277CrossRefPubMedPubMedCentralGoogle Scholar
  63. Nagelkerken I, Sheaves M, Baker R, Connolly RM (2015) The seascape nursery: a novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish Fisher 16:362–371CrossRefGoogle Scholar
  64. Nagelkerken I (2009) Evaluation of nursery function of mangroves and seagrass beds for tropical decapods and reef fishes: patterns and underlying mechanisms. In: Nagelkerken I (ed) Ecological connectivity among tropical coastal ecosystems. Springer Science and Business Media, Dordrecht, pp 357–399CrossRefGoogle Scholar
  65. Nagelkerken I, Kleijnen S, Klop T, van den Brand R, de la Moriniere EC, van der Velde G (2001) Dependence of Caribbean reef fishes on mangroves and seagrass beds as nursery habitats: a comparison of fish faunas between bays with and without mangroves/seagrass beds. Mar Ecol Prog Ser 214:225–235CrossRefGoogle Scholar
  66. Naylor RL, Drew M (1998) Valuing mangrove resources in Kosrae, Micronesia. Eviron Dev Econ 3:471–490CrossRefGoogle Scholar
  67. Osland MJ, Enwright N, Day RH, Doyle TW (2013) Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Glob Chang Biol 19:1482–1494CrossRefPubMedGoogle Scholar
  68. Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, Brander K, Bruno JF, Buckley LB, Burrows MT, Duarte CM, Halpern BS, Holding J, Kappel CV, O’Connor MI, Pandolfi JM, Parmesan C, Schwing F, Thompson SA, Richardson AJ (2013) Global imprint of climate change on marine life. Nat Clim Chang 3:919–925CrossRefGoogle Scholar
  69. Pramova E, Locatelli B, Djoudi H, Somorin OA (2012) Forests and trees for social adaptation to climate variability and change. Wiley Interdisciplinary Reviews. Clim Chang 3:581–596Google Scholar
  70. Primavera JH, Esteban JMA (2008) A review of mangrove rehabilitation in the Philippines: successes, failures and future prospects. Wetl Ecol Manag 16:345–358CrossRefGoogle Scholar
  71. Quinitio ET, Parado-Etepa FD, Millamena OM, Rodriguez EM (2001) seed production of mud crab Scylla serrata juveniles. Asian Fish Sci 14:161–174Google Scholar
  72. Rashid Sumaila U, Cheung WWL, Lam VWY, Pauly D, Herrick S (2011) Climate change impacts on the biophysics and economics of world fisheries. Nat Clim Chang 1:449–456CrossRefGoogle Scholar
  73. Record S, Charney ND, Zakaria RM, Ellison AM (2013) Projecting global mangrove species and community distributions under climate change. Ecosphere 4:34CrossRefGoogle Scholar
  74. Richards RG, Davidson AT, Meynecke JO, Beattie K, Hernaman V, Lynam T, van Putten IE (2015) Effects and mitigations of ocean acidification on wild and aquaculture scallop and prawn fisheries in Queensland, Australia. Fish Res 161:42–56CrossRefGoogle Scholar
  75. Riley ME, Johnston CA, Feller IC, Griffen BD (2014) Range Expansion of Aratus pisonii (Mangrove Tree Crab) into novel vegetative habitats. Southeast Nat 13:43–48CrossRefGoogle Scholar
  76. Rodriguez-Fourquet C, Sabat AM (2009) Effect of harvesting, vegetation structure and composition on the abundance and demography of the land crab Cardisoma guanhumi in Puerto Rico. Wetl Ecol Manag 17:627–640CrossRefGoogle Scholar
  77. Roessig JM, Woodley CM, Cech JJ, Hansen LJ (2004) Effects of global climate change on marine and estuarine fishes and fisheries. Rev Fish Biol Fish 14:251–275CrossRefGoogle Scholar
  78. Ruckelshaus M, Doney SC, Galindo HM, Barry JP, Chan F, Duffy JE, English CA, Gaines SD, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2013) Securing ocean benefits for society in the face of climate change. Mar Pol 40:154–159CrossRefGoogle Scholar
  79. Saenger P, Bellan MF (1995) The mangrove vegetation of the Atlantic Coast of Africa: a review. Université de Toulouse, ToulouseGoogle Scholar
  80. Saintilan N, Williams RJ (1999) Mangrove transgression into saltmarsh environments in south-east Australia. Glob Ecol Biogeogr 8:117–124CrossRefGoogle Scholar
  81. Saintilan N, Wilson NC, Rogers K, Rajkaran A, Krauss KW (2014) Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob Chang Biol 20:147–157CrossRefPubMedGoogle Scholar
  82. Sammut J, White I, Melville MD (1996) Acidification of an estuarine tributary in eastern Australia due to drainage of acid sulfate soils. Mar Freshw Res 47:669–684CrossRefGoogle Scholar
  83. Saunders MI, Leon JX, Callaghan DP, Roelfsema CM, Hamylton S, Brown CJ, Baldock T, Golshani A, Phinn SR, Lovelock CE, Hoegh-Guldberg O, Woodroffe CD, Mumby PJ (2014) Interdependency of tropical marine ecosystems in response to climate change. Nat Clim Chang 4:724–729CrossRefGoogle Scholar
  84. Smith AH, Berkes F (1993) Community-based use of mangrove resources in St. Lucia. Int J Environ Stud 43:123–131CrossRefGoogle Scholar
  85. Srinivasan UT, Carey SP, Hallstein E, Higgins PAT, Kerr AC, Koteen LE, Smith AB, Watson R, Harte J, Norgaard RB (2008) The debt of nations and the distribution of ecological impacts from human activities. Proc Natl Acad Sci U S A 105:1768–1773CrossRefPubMedPubMedCentralGoogle Scholar
  86. Stephan M, Hobsbawn P (2014) Australian fisheries and aquaculture statistics 2013, Fisheries Research and Development Corporation project 2010/208. ABARES, Canberra, November. CC BY 3.0Google Scholar
  87. Taylor S, Webley J, McInnes K (2012) 2010 Statewide Recreational Fishing Survey. State of Queensland. Department of Agriculture, Fisheries and ForestryGoogle Scholar
  88. Thampanya U, Vermaat JE, Sinsakul S, Panapitukkul N (2006) Coastal erosion and mangrove progradation of Southern Thailand. Estuar Coast Shelf Sci 68:75–85CrossRefGoogle Scholar
  89. Thorsten B, Friess D (2016) Geomorphic knowledge for mangrove restoration: a pan-tropical categorization. Earth Surf Processes Landforms 41:231–239CrossRefGoogle Scholar
  90. Traill LW, Perhans K, Lovelock CE, Prohaska A, McFallan S, Rhodes JR, Wilson KA (2011) Managing for change: wetland transitions under sea-level rise and outcomes for threatened species. Divers Distrib 17:1225–1233CrossRefGoogle Scholar
  91. Vannucci M (2002) Indo-west pacific mangroves. In: Lacerda LD (ed) Mangrove ecosystems. Springer, Verlag, pp 123–215CrossRefGoogle Scholar
  92. Walters BB (2005) Patterns of local wood use and Cutting of Philippine mangrove forests. Econ Bot 59:66–76CrossRefGoogle Scholar
  93. Walters BB, Rönnbäck P, Kovacs JM, Crona B, Hussain SA, Badola R, Primavera JH, Barbier E, Dahdouh-Guebas F (2008) Ethnobiology, socio-economics and management of mangrove forests: a review. Aquat Bot 89:220–236CrossRefGoogle Scholar
  94. Yevich R, Logan J (2003) An assessment of biofuel use and burning of agricultural waste in the developing world. Glob Biogeochem Cycles 17:1–21CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mark Huxham
    • 1
  • Amrit Dencer-Brown
    • 2
  • Karen Diele
    • 1
  • Kandasamy Kathiresan
    • 3
  • Ivan Nagelkerken
    • 4
  • Caroline Wanjiru
    • 5
  1. 1.School of Applied SciencesEdinburgh Napier UniversityEdinburghUK
  2. 2.Institute for Applied EcologyAuckland University of TechnologyAucklandNew Zealand
  3. 3.Centre of Advanced Study in Marine BiologyMarine Sciences, Annamalai UniversityParangipettaiIndia
  4. 4.Southern Seas Ecology Laboratories, School of Biological SciencesThe University of AdelaideAdelaideAustralia
  5. 5.Kenya Marine and Fisheries Research InstituteMombasaKenya

Personalised recommendations