Advertisement

Mangrove Ecosystems under Climate Change

  • T. C. JennerjahnEmail author
  • E. Gilman
  • K. W. Krauss
  • L. D. Lacerda
  • I. Nordhaus
  • E. Wolanski

Abstract

This chapter assesses the response of mangrove ecosystems to possible outcomes of climate change, with regard to the following categories: (i) distribution, diversity, and community composition, (ii) physiology of flora and fauna, (iii) water budget, (iv) productivity and remineralization, (v) carbon storage in biomass and sediments, and (vi) the filter function for elements beneficial or harmful to life. These categories are then used to identify the regions most vulnerable to climate change. The four most important factors determining the response of mangrove ecosystems to climate change are sea level rise, an increase in frequency and/or intensity of storms, increases in temperature, and aridity. While these changes may be beneficial for some mangrove forests at latitudinal distribution limits, they will threaten forest structure and functions and related ecosystem services in most cases. The interaction of climate change with human interventions is discussed, as well as the effects on ecosystem services including possible adaptation and management options. The chapter closes with an outlook on knowledge gaps and priority research needed to fill these gaps.

Keywords

Climate change Mangrove forest Ecosystem service Sea level rise Vulnerability Adaptation Management Carbon storage Diversity Temperature increase 

References

  1. Albers T, Schmitt K (2015) Dyke design, floodplain restoration and mangrove co-management as parts of an area coastal protection strategy for the mud coasts of the Mekong Delta, Vietnam. Wetl Ecol Manag 23:991–1004CrossRefGoogle Scholar
  2. Allen JA (1998) Mangroves as alien species: the case of Hawaii. Glob Ecol Biogeogr 7:61–71CrossRefGoogle Scholar
  3. Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29:331–349CrossRefGoogle Scholar
  4. Alongi DM (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci 76:1–13CrossRefGoogle Scholar
  5. Alongi DM (2012) Carbon sequestration in mangrove forests. Carbon Manag 3:313–322CrossRefGoogle Scholar
  6. Alongi DM (2014) Carbon cycling and storage in mangrove forests. Annu Rev Mar Sci 6:195–219CrossRefGoogle Scholar
  7. Alongi DM (2015) The impact of climate change on mangrove forests. Curr Clim Change Rep 1:30–39CrossRefGoogle Scholar
  8. Amjad AS, Kasawani I, Kamaruzaman J (2007) Degradation of Indus Delta mangroves in Pakistan. Int J Geol 1:27–34Google Scholar
  9. Andutta F, Ridd PV, Wolanski E (2011) Dynamics of hypersaline coastal waters in the Great Barrier Reef. Estuar Coast Shelf Sci 94:299–305CrossRefGoogle Scholar
  10. Anthony EJ, Gratiot N (2012) Coastal engineering and large-scale mangrove destruction in Guyana, South America: averting an environmental catastrophe in the making. Ecol Eng 47:268–273CrossRefGoogle Scholar
  11. Aung TT, Mochida Y, Than MM (2013) Prediction of recovery pathways of cyclone-disturbed mangroves in the mega delta of Myanmar. Forest Ecol Manag 293:103–113CrossRefGoogle Scholar
  12. Ball MC, Cochrane MJ, Rawason HM (1997) Growth and water use of the mangroves Rhizophora apiculata and R. stylosa in response to salinity and humidity under ambient and elevated concentration of atmospheric CO2. Plant Cell Environ 20:1158–1166CrossRefGoogle Scholar
  13. Barbier ED, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:69–193CrossRefGoogle Scholar
  14. Barr JG, Engel V, Fuentes JD, Fuller DO, Kwon H (2013) Modeling light use efficiency in a subtropical mangrove forest equipped with CO2 eddy covariance. Biogeosciences 10:2145–2158CrossRefGoogle Scholar
  15. Bianchi TS, Allison MA, Zhao J, Li X, Comeaux RS, Feagin RA, Kulawardhana RW (2013) Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuar Coast Shelf Sci 119:7–16CrossRefGoogle Scholar
  16. Bouillon S, Borges AV, Castaneda-Moya E, Diele K, Dittmar T, Duke NC, Kristensen E, Lee SY, Marchand C, Middelburg JJ, Rivera-Monroy VH, Smith TH III, Twilley RR (2008) Mangrove production and carbon sinks: a revision of global budget estimates. Glob Biogeochem Cycles 22:GB2013.  https://doi.org/10.1029/2007GB003052 CrossRefGoogle Scholar
  17. Breithaupt JL, Smoak JM, Smith TJ III, Sanders CJ, Hoare A (2012) Organic carbon burial rates in mangrove sediments: strengthening the global budget. Glob Biogeochem Cycles 26:GB3011CrossRefGoogle Scholar
  18. Byrne M, Przeslawski R (2013) Multistressor impacts of warming and acidification of the ocean on marine invertebrates´ life histories. Integr Comp Biol 53:582–596PubMedCrossRefGoogle Scholar
  19. Cahoon DR (2006) A review of major storm impacts on coastal wetland elevations. Estuar Coasts 29:889–898CrossRefGoogle Scholar
  20. Cahoon DR (2015) Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuar Coasts 38:1077–1084CrossRefGoogle Scholar
  21. Cahoon DR, Hensel PF, Spencer T, Reed DJ, McKee KL, Saintilan N (2006) Coastal wetland vulnerability to relative sea-level rise: wetland elevation trends and process controls. In: JTA V, Beltman B, Bobbink R, Whigham D (eds) Wetlands and natural resource management. Ecological studies, vol 190. Springer, Berlin/Heidelberg, pp 271–292CrossRefGoogle Scholar
  22. Cavanaugh KC, Kellner JR, Fordem AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC (2014) Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. P Natl Acad Sci USA 111:723–727CrossRefGoogle Scholar
  23. Cheeseman J (1994) Depressions of photosynthesis in mangrove canopies. In: Baker NR, Bowyer JR (eds) From molecular mechanisms to the field. Bios Scientific Publishers, Oxford, pp 377–389Google Scholar
  24. Cherry JA, McKee KL, Grace JB (2009) Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. J Ecol 97:67–77CrossRefGoogle Scholar
  25. Chimner RA, Fry B, Kaneshiro MY, Cormier N (2006) Current extent and historical expansion of introduced mangroves on O’ahu, Hawai’i. Pac Sci 60:377–383CrossRefGoogle Scholar
  26. Christensen JH, Krishna Kumar K, Aldrian E, An S-I, Cavalcanti IFA, de Castro M, Dong W, Goswami P, Hall A, Kanyanga JK, Kitoh A, Kossin J, Lau N-C, Renwick J, Stephenson DB, Xie SP, Zhou T (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 1217–1308Google Scholar
  27. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The Physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 1137–1216Google Scholar
  28. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 465–570Google Scholar
  29. Clüsener M, Breckle SW (1987) Reasons for the limitation of mangrove along the west coast of northern Peru. Vegetatio 68:173–177CrossRefGoogle Scholar
  30. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 1029–1136Google Scholar
  31. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  32. Dale P, Eslami-Andargoli L, Knight J (2013) The impact of encroachment of mangroves into saltmarshes on saltwater mosquito habitats. J Vector Ecol 38:330–338PubMedCrossRefGoogle Scholar
  33. Di Nitto D, Neukermans G, Koedam N, Defever H, Pattyn F, Kairo JG, Dahdouh-Guebas F (2014) Mangroves facing climate change: landward migration potential in response to projected scenarios of sea level rise. Biogeosciences 11:857–871CrossRefGoogle Scholar
  34. Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297CrossRefGoogle Scholar
  35. Duke NC, Ball MC, Ellison JC (1998) Factors influencing biodiversity and distributional gradients in mangroves. Glob Ecol Biogeogr 7:27–47CrossRefGoogle Scholar
  36. Ellison J (2000) How South Pacific mangroves may respond to predicted climate change and sea level rise. Chapter 15. In: Gillespie A, Burns W (eds) Climate change in the South Pacific: impacts and responses in Australia, New Zealand, and Small Islands States. Kluwer Academic Publishers, Dordrecht, pp 289–301CrossRefGoogle Scholar
  37. Ellison JC, Stoddart DR (1991) Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications. J Coast Res 7:151–165Google Scholar
  38. Ellison AM, Farnsworth EJ, Merkt RE (1999) Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Glob Ecol Biogeogr 8:95–115CrossRefGoogle Scholar
  39. Eslami-Andargoli L, Dale P, Sipe N, Chaseling J (2009) Mangrove expansion and rainfall patterns in Moreton Bay, Southeast Queensland, Australia. Estuar Coast Shelf Sci 85:292–298CrossRefGoogle Scholar
  40. Ewel KC, Twilley RR, Ong JE (1998) Different kinds of mangrove forests provide different goods and services. Glob Ecol Biogeogr 7:83–94CrossRefGoogle Scholar
  41. Farnsworth EJ, Ellison AM, Gong WK (1996) Elevated CO2 alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.) Oecologia 108:599–609PubMedCrossRefGoogle Scholar
  42. Feller IC, Whigham DF, McKee KL, O’Neill JP (2002) Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochem 62:145–175CrossRefGoogle Scholar
  43. Feller IC, Whigham DF, McKee KL, Lovelock CE (2003) Nitrogen limitation of growth and nutrient dynamics in a mangrove forest, Indian River Lagoon, Florida. Oecologia 134:405–414PubMedCrossRefGoogle Scholar
  44. Field CD (1995b) Impact of expected climate change on mangroves. Hydrobiologia 295:75–81CrossRefGoogle Scholar
  45. Fonseca lV, Marins RV, Lacerda LD (2014) Phosphorus and suspended mater balance in a mangrove forest receiving shrimp farms effluents in the Jaguaribe River, NE Brazil. Braz J Aquat Sci Technol 18:53–60CrossRefGoogle Scholar
  46. Fusi M, Giomi F, Babbini S, Daffonchio D, McQuaid CD, Porri F, Cannicci C (2015) Thermal specialization across large geographical scales predicts the resilience of mangrove crab populations to global warming. Oikos 124:784–795CrossRefGoogle Scholar
  47. Gilman E, Van Lavieren H, Ellison J, Jungblut V, Wilson L, Areki F, Brighouse G, Bungitak J, Dus E, Henry M, Sauni I, Kilman M, Matthews E, Teariki-Ruatu N, Tukia S, Yuknavage K (2006) Pacific Island mangroves in a changing climate and rising sea. UNEP Regional Seas Reports and Studies No. 179. UNEP, NairobiGoogle Scholar
  48. Gilman EL, Ellison J, Duke NC, Field C (2008) Threats to mangroves from climate change and adaptation options: a review. Aquat Bot 89:237–250CrossRefGoogle Scholar
  49. Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159CrossRefGoogle Scholar
  50. Godoy MDP, Lacerda LD (2014) River-island response to land-use change within the Jaguaribe River, Brazil. J Coast Res 30:399–410CrossRefGoogle Scholar
  51. Hamilton SE, Casey D (2016) Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob Ecol Biogeogr 25:729–738Google Scholar
  52. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 159–254Google Scholar
  53. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866CrossRefGoogle Scholar
  54. Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 318:1523–1528CrossRefGoogle Scholar
  55. Humborg C, Ittekkot V, von Cociasu A, Bodungen B (1997) Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 386:385–388CrossRefGoogle Scholar
  56. IPCC (2014) In: Pachauri RK, Meyer LA (eds) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team]. IPCC, Geneva, p 151Google Scholar
  57. Jennerjahn TC (2012) Biogeochemical response of tropical coastal systems to present and past environmental change. Earth Sci Rev 114:19–41CrossRefGoogle Scholar
  58. Jennerjahn TC, Ittekkot V (2002) Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89:23–30PubMedCrossRefGoogle Scholar
  59. Jennerjahn TC, Soman K, Ittekkot V, Nordhaus I, Sooraj S, Priya RS, Lahajnar N (2008) Effect of land use on the biogeochemistry of dissolved nutrients and suspended and sedimentary organic matter in the tropical Kallada River and Ashtamudi estuary, Kerala, India. Biogeochemistry 90:29–47CrossRefGoogle Scholar
  60. Kidwai, FP, Ahmed W, Tabrez M, Zhang J, Khan MW (2016) Practicality of marine protected areas - Can there be solutions for the River Indus delta? Estuar Coast Shelf Sci 183:349–359Google Scholar
  61. Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, Doblas-Reyes FJ, Fiore AM, Kimoto M, Meehl GA, Prather M, Sarr A, Schär C, Sutton R, van Oldenborgh GJ, Vecchi G, Wang HJ (2013) Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York, pp 953–1028Google Scholar
  62. Kiwango H, Njau KN, Wolanski E (2015) The need to enforce minimum environmental flow requirements in Tanzania to preserve estuaries: case study of mangrove-fringed Wami River estuary. Ecohydrol Hydrobiol.  https://doi.org/10.1016/j.ecohyd.2015.09.002
  63. Knutson TR, McBride JL, Chan J, Emmanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava AK, Sugi M (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163CrossRefGoogle Scholar
  64. Kossin JP, Knapp KR, Vimont DJ, Murnane RJ, Harper BA (2007) A globally consistent reanalysis of hurricane variability and trends. Geophys Res Lett 34:L04815.  https://doi.org/10.1029/2006GL028836 CrossRefGoogle Scholar
  65. Krauss KW, Allen JA, Cahoon DR (2003) Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuar Coast Shelf Sci 56:251–259CrossRefGoogle Scholar
  66. Krauss KW, Lovelock CE, McKee KL, López-Hollman L, Ewe SML, Sousa WP (2008) Environmental drivers in mangrove establishment and early development: a review. Aquat Bot 89:105–127CrossRefGoogle Scholar
  67. Krauss KW, McKee KL, Hester MW (2014a) Water use characteristics of black mangrove (Avicennia germinans) communities along an ecotone with marsh at a northern geographical limit. Ecohydrology 7:354–365CrossRefGoogle Scholar
  68. Krauss KW, McKee KL, Lovelock CE, Cahoon R, Saintilan N, Reef R, Chen L (2014b) How mangrove forests adjust to rising sea level. New Phytol 202:19–34PubMedCrossRefGoogle Scholar
  69. Krauss KW, Barr JG, Engel V, Fuentes JD, Wang H (2015) Approximations of stand water use versus evapotranspiration from three mangrove forests in southwest Florida, USA. Agri Forest Meteorol 213:291–303.  https://doi.org/10.1016/j.agrformet.2014.11.014 CrossRefGoogle Scholar
  70. Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso JP (2013) Impact of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 19:1884–1896PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kurihara H, Matsui M, Furukawa H, Hayashi M, Ishimatsu A (2008) Long-term effects of predicted future seawater CO2 conditions on the survival and growth of the marine shrimp Palaemon pacificus. J Exp Mar Biol Ecol 367:41–46CrossRefGoogle Scholar
  72. Lacerda LD, Dias FJS, Marins RV, Soares TM, Godoy JM, Godoy MLDP (2013) Pluriannual watershed discharges of Hg into a tropical semi-arid estuary of the Jaguaribe River, NE Brazil. J Braz Chem Soc 24:1719–1731Google Scholar
  73. Lang’at JKS, Kairo JG, Mencuccini M, Bouillon S, Skov M, Waldron S, Huxham M (2014) Rapid losses of surface elevation following tree girdling and cutting in tropical mangroves. PlosOne 9:e107868CrossRefGoogle Scholar
  74. Lee SY (2008) Mangrove macrobenthos: assemblages, services, and linkages. J Sea Res 59:16–29CrossRefGoogle Scholar
  75. Lee SY, Primavera JH, Dahdouh-Guebas F, McKee K, Bosire JO, Cannicci S, Diele K, Fromard F, Koedam N, Marchand C, Mendelssohn I, Mukherjee N, Record S (2014) Ecological role and services of tropical mangrove ecosystems: a reassessment. Glob Ecol Biogeogr 23:726–743CrossRefGoogle Scholar
  76. Littlewood DT (1989) Thermal tolerance and the effects of temperature on air-gaping in the mangrove oyster, Crassostrea rhizophorae. Comp Biochem Physiol 93A:395–397CrossRefGoogle Scholar
  77. Lovelock CE, Feller IC, Ellis J, Hancock N, Schwarz AM, Hancock N, Nichols P, Sorrell B (2007) Mangrove growth in New Zealand estuaries: the role of nutrient enrichment at sites with contrasting rates of sedimentation. Oecologia 153:633–641PubMedCrossRefGoogle Scholar
  78. Lovelock CE, Ball MC, Martin KC, Feller IC (2009) Nutrient enrichment increases mortality of mangroves. PlosOne 4.  https://doi.org/10.1371/journal.pone.0005600
  79. Lovelock CE, Adame MF, Bennion V, Hayes M, Reef R, Santini M, Cahoon DR (2015a) Sea level and turbidity controls on mangrove soil surface elevation change. Estuar Coast Shelf Sci 153:1–9CrossRefGoogle Scholar
  80. Lovelock CE, Cahoon DR, Friess DA, Guntenspergen GR, Krauss KW, Reef R, Rogers K, Saunders ML, Sidik F, Swales A, Saintilan N, Thuyen LX, Triet T (2015b) The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526:559–563PubMedCrossRefGoogle Scholar
  81. Lovelock CE, Krauss KW, Osland MJ, Reef R, Ball MC (2016) The physiology of mangrove trees with changing climate. In: Goldstein G, Santiago L (eds) Tropical tree physiology: adaptations and responses in a changing environment. Springer, New York, pp 149–179CrossRefGoogle Scholar
  82. Machado W, Moscatelli M, Rezende LG, Lacerda LD (2002) Mercury, zinc and copper accumulation in mangrove sediments affected by landfill wastewater. Environ Pollut 120:455–461PubMedCrossRefGoogle Scholar
  83. Mazda Y, Wolanski E, Ridd PV (2007) Part I: outline of the physical processes within mangrove systems. In: Mazda Y, Wolanski E, Ridd PV (eds) The role of physical processes in mangrove environments: manual for the preservation and utilization of mangrove ecosystems. Terrapub Publishers, Tokyo, pp 3–64Google Scholar
  84. McKee KL, Rooth JE (2008) Where temperate meets tropical: multi-factorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Glob Chang Biol 14:971–984CrossRefGoogle Scholar
  85. McKee KL, Cahoon DR, Feller IC (2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob Ecol Biogeogr 16:545–556CrossRefGoogle Scholar
  86. McMahon RF (2001) Acute thermal tolerance in intertidal gastropods relative to latitude, superfamily, zonation and habitat with special emphasis on the Littorinoidea. J Shellfish Res 20:459–467Google Scholar
  87. Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: synthesis. Island Press, Washington, DC. www.unep.org/maweb
  88. Milliman JD, Farnsworth KL (2011) River discharge to the coastal ocean – a global synthesis. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  89. Mumby P, Edwards A, Arlas-Gonzalez J, Lindeman K, Blackwell P, Gall A, Gorczynska M, Harbone A, Pescod C, Renken H, Wabnitz C, Llewellyn G (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536PubMedCrossRefGoogle Scholar
  90. Nascimento WR Jr, Souza-Filho PW, Proisy C, Lucas RM, Rosenqvist A (2013) Mapping changes in the largest continuous Amazonian mangrove belt using object-based classification of multisensor satellite imagery. Estuar Coast Shelf Sci 117:83–93CrossRefGoogle Scholar
  91. Nellemann C, Corcoran E, Duarte CM, Valdés L, De Young C, Fonseca L, Grimsditch G (eds) (2009) Blue Carbon. A Rapid Response Assessment. United Nations Environment Programme, GRID-Arendal, www.grida.no
  92. Nicholls RJ, Cazenave A (2010) Sea-level rise and its impact on coastal zones. Science 328:1517–1520PubMedCrossRefGoogle Scholar
  93. Nilsson GE, Crawley N, Lunde IG, Munday PL (2009) Elevated temperature reduces the respiratory scope of coral reef fishes. Glob Chang Biol 15:1405–1412CrossRefGoogle Scholar
  94. Nhan NN (2016) Tidal regime deformation by sea level rise along the coast of the Mekong Delta. Estuar Coast Shelf Sci 183: 382–391Google Scholar
  95. Nordhaus I (2008) Global climate and regional environmental change affecting coastal ecosystems: 2. Ecology and Resources Of Mangrove Forests. In: Datta RK (ed) Coastal ecosystems – hazards, management and rehabilitation. Centre for Science and Technology of the Non-Aligned and Other Developing Countries (NAM S&T Centre), Daya Publishing House, Delhi, pp 78–99Google Scholar
  96. Nordhaus I, Wolff M, Diele K (2006) Litter processing and population food intake of the mangrove crab Ucides cordatus in a high intertidal forest in northern Brazil. Estuar Coast Shelf Sci 67:239–250CrossRefGoogle Scholar
  97. Osland MJ, Enwright N, Day RH, Doyle TW (2013) Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Glob Chang Biol 19:1482–1494PubMedCrossRefGoogle Scholar
  98. Osland MJ, Day RH, Larriviere JC, From AS (2014a) Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone. PlosOne 9:e99604CrossRefGoogle Scholar
  99. Osland MJ, Enwright N, Stagg CL (2014b) Freshwater availability and coastal wetland foundation species: ecological transitions along a rainfall gradient. Ecology 95:2789–2802CrossRefGoogle Scholar
  100. Page SE, Rieley JO, Banks CJ (2011) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818CrossRefGoogle Scholar
  101. Parker LM, Ross PM, O’Connor WA (2010) Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Mar Biol 157:2435–2452CrossRefGoogle Scholar
  102. Pechenik JA (1999) On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar Ecol Prog Ser 177:269–297CrossRefGoogle Scholar
  103. Pernetta JC (1993) Mangrove forests, climate change and sea level rise: hydrobiological influences on community structure and survival, with examples from the Indo-West Pacific. A marine conservation and development report. IUCN, GlandGoogle Scholar
  104. Perry CL, Mendelssohn IA (2009) Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands 29:396–406CrossRefGoogle Scholar
  105. Piou C, Feller IC, Berger U, Chi F (2006) Zonation patterns of Belizean offshore mangrove forests 41 years after a catastrophic hurricane. Biotropica 38:365–372CrossRefGoogle Scholar
  106. Quisthoudt K, Schmitz N, Randin CF, Dahdouh-Guebas F, Robert EMR, Koedam N (2012) Temperature variation among mangrove latitudinal range limits worldwide. Trees 26:1919–1931CrossRefGoogle Scholar
  107. Rabalais NN, Turner RE, Justic D, Dortch Q, Wiseman WJ Jr, Sen Gupta BK (2000) Gulf of Mexico biological system responses to nutrient changes in the Mississippi River. In: Hobbie J (ed) Estuarine science: a synthetic approach to research and practice. Island Press, Washington, DC, pp 241–268Google Scholar
  108. Record S, Charney ND, Zakaria RM, Ellison AM (2013) Projecting global mangrove species and community distributions under climate change. Ecosphere 4:1–23CrossRefGoogle Scholar
  109. Reef R, Lovelock CE (2015) Regulation of water balance in mangroves. Ann Bot-London 115:385–395CrossRefGoogle Scholar
  110. Reef R, Feller IC, Lovelock CE (2010) Nutrition of mangroves. Tree Physiol 30:1148–1160PubMedCrossRefGoogle Scholar
  111. Richards DR, Friess DA (2016) Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc Nat Acad Sci 113:344–349Google Scholar
  112. Robertson AI (1986) Leaf-burying crabs: their influence on energy flow and export from mixed mangrove forests (Rhizophora spp.) in northeastern Australia. J Exp Mar Biol Ecol 102:237–248CrossRefGoogle Scholar
  113. Robertson AI, Daniel PA (1989) The influence of crabs on litter processing in high intertidal mangrove forests in tropical Australia. Oecologia 78:191–198PubMedCrossRefGoogle Scholar
  114. Robins PE, Lewis MJ, Simpson JH, Howlett ER, Malham SK (2014) Future variability of solute transport in a macrotidal estuary. Estuar Coast Shelf Sci 151:88–99CrossRefGoogle Scholar
  115. Rogers K, Saintilan N, Heijns H (2005) Mangrove encroachment of salt marsh in Western Port Bay, Victoria: the role of sedimentation, subsidence and sea level rise. Estuaries 28:551–559CrossRefGoogle Scholar
  116. Saintilan N, Wilson NC, Rogers K, Rajkaran A, Krauss KW (2014) Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob Chang Biol 20:147–157PubMedCrossRefGoogle Scholar
  117. Saito Y, Chaimanee N, Jarupongsakul T, Syvitski JPM (2007) Shrinking megadeltas in Asia: sea-level rise and sediment reduction impacts from case study of the Chao Phraya delta. Inprint Newsletter of the IGBP/IHDP Land Ocean Interaction in the Coastal Zone 2:3–9Google Scholar
  118. Salmo SG, Lovelock CE, Duke NC (2013) Assessment of vegetation and soil conditions in restored mangroves interrupted by severe tropical typhoon ‘Chan-hom’ in the Philippines. Hydrobiologia 733:85–102CrossRefGoogle Scholar
  119. Sasmito SD, Murdiyarso D, Friess DA, Kurnianto S (2015) Can mangroves keep pace with contemporary sea level rise? A global data review. Wetl Ecol Manag.  https://doi.org/10.1007/s11273-015-9466-7
  120. Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24Google Scholar
  121. Smith SV, Swaney DP, Talaue-McManus L, Bartley JD, Sandhei PT, McLaughlin CJ, Dupra VC, Crossland CJ, Buddemeier RW, Maxwell BA, Wulff F (2003) Humans, hydrology, and the distribution of inorganic nitrogen loading to the ocean. Bioscience 53:235–245CrossRefGoogle Scholar
  122. Snedaker SC, Araujo RJ (1998) Stomatal conductance and gas exchange in four species of Caribbean mangroves exposed to ambient and increased CO2. Mar Freshw Res 49:325–327CrossRefGoogle Scholar
  123. Snedaker SC, Meeder JF, Ross MS, Ford RG (1994) Discussion of “Ellison, Joanna C. and Stoddart, David R., 1991. Ellison, J.C., Stoddart, D.R., 1991. Mangrove ecosystem collapse during predicted sea-level rise: holocene analogues and implications. J Coastal Res 7:151-165”. J Coast Res 10:497–498Google Scholar
  124. Soares MLG, Estrada GCD, Fernandez V, Tognella MMP (2012) Southern limit of the Western South Atlantic mangroves: assessment of the potential effects of global warming from a biogeographical perspective. Estuar Coast Shelf Sci 101:44–53CrossRefGoogle Scholar
  125. Solomon S, Qin D, Manning M, Alley RB, Berntsen T, Bindoff NL, Chen Z, Chidthaisong A, Gregory JM, Hegerl GC, Heimann M, Hewitson B, Hoskins BJ, Joos F, Jouzel J, Kattsov V, Lohmann U, Matsuno T, Molina M, Nicholls N, Overpeck J, Raga G, Ramaswamy V, Ren J, Rusticucci M, Somerville R, Stocker TF, Whetton P, Wood RA, Wratt D (2007) Technical summary. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  126. Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. Earthscan, Washingon, DCGoogle Scholar
  127. Syvitski JPM (2008) Deltas at risk. Sustain Sci 3:23–32CrossRefGoogle Scholar
  128. Syvitski JPM, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380PubMedCrossRefGoogle Scholar
  129. Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J, Vörösmarty CJ, Saito Y, Giosan L, Nicholls RJ (2009) Sinking deltas due to human activities. Nat Geosci 2:681–686CrossRefGoogle Scholar
  130. Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, CambridgeGoogle Scholar
  131. Twilley RR, Chen RH, Hargis T (1992) Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut 64:265–288CrossRefGoogle Scholar
  132. Valiela I, Cole ML (2002) Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems 5:92–102CrossRefGoogle Scholar
  133. Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51:807–815CrossRefGoogle Scholar
  134. Victor S, Golbuu Y, Wolanski E, Richmond R (2004) Fine sediment trapping in two mangrove-fringed estuaries exposed to contrasting land-use intensity, Palau, Micronesia. Wetl Ecol Manag 12:277–283CrossRefGoogle Scholar
  135. Vörösmarty CJ, Meybeck M, Fekete B, Sharmad K, Green P, Syvitski JPM (2003) Anthropogenic sediment retention: major global impact from registered river impoundments. Glob Planet Chang 39:169–190CrossRefGoogle Scholar
  136. Walling DE, Fang D (2003) Recent trends in the suspended sediment loads of the world’s rivers. Glob Planet Chang 39:111–126CrossRefGoogle Scholar
  137. Webb EL, Friess DA, Krauss KW, Cahoon DR, Guntenspergen GR, Phelps J (2013) A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nat Clim Chang 3:458–465CrossRefGoogle Scholar
  138. Wells S, Ravilous C, Corcoran E (2006) In the front line: shoreline protection and other ecosystem services from mangroves and coral reefs. Cambridge, United Nations Environment Programme World Conservation Monitoring CentreGoogle Scholar
  139. Whiteley NM (2011) Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Prog Ser 430:257–271CrossRefGoogle Scholar
  140. Wolanski E, Elliott M (2015) Estuarine ecohydrology. An introduction. Elsevier, AmsterdamGoogle Scholar
  141. Wolanski E, Mazda Y, Ridd P (1992) Mangrove hydrodynamics. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems, AGU, Washington, Coastal and Estuarine Studies, vol 41, pp 43–62CrossRefGoogle Scholar
  142. Woodroffe CD (1992) Mangrove sediments and geomorphology. In: Robertson AI, Alongi DM (eds) Tropical mangrove ecosystems, AGU, Washington, Coastal and Estuarine Studies, vol 41, pp 7–41CrossRefGoogle Scholar
  143. Woodroffe CD, Thom BG, Chappell J (1985) Development of widespread mangrove swamps in mid-Holocene times in northern Australia. Nature 317:711–713CrossRefGoogle Scholar
  144. Woodroffe, CD, Rogers, K, McKee, KL, Lovelock, CE, Mendelssohn, IA, Saintilan, N (2016) Mangrove Sedimentation and Response to Relative Sea-Level Rise. Annual Review of Marine Science 8:243–266Google Scholar
  145. Woodworth PL, Blackman DL (2004) Evidence for systematic changes in extreme high waters since the mid-1970s. J Clim 17:1190–1197CrossRefGoogle Scholar
  146. Yates KK, Rogers CS, Herlan JJ, Brooks GR, Smiley NA, Larson RA (2014) Diverse coral communities in mangrove habitats suggest a novel refuge from climate change. Biogeosciences 11:4321–4337CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • T. C. Jennerjahn
    • 1
    Email author
  • E. Gilman
    • 2
  • K. W. Krauss
    • 3
  • L. D. Lacerda
    • 4
  • I. Nordhaus
    • 1
  • E. Wolanski
    • 5
  1. 1.Leibniz Centre for Tropical Marine Research (ZMT)BremenGermany
  2. 2.College of Natural SciencesHawaii Pacific UniversityHonoluluUSA
  3. 3.U.S. Geological SurveyWetland and Aquatic Research CenterLafayetteUSA
  4. 4.LabomarUniversidade Federal do CearaFortalezaBrazil
  5. 5.TropWATERJames Cook UniversityTownsvilleAustralia

Personalised recommendations