Advertisement

Atypical Chronic Myeloid Leukemia, BCR/ABL1 Negative

  • Katherine Boothe Levinson
  • Adam BaggEmail author
Chapter
Part of the Molecular Pathology Library book series (MPLB, volume 12)

Abstract

Atypical chronic myeloid leukemia (aCML) is a rare neoplasm of hematopoietic stem cells characterized by overlapping myelodysplastic and myeloproliferative features, whose diagnostic hallmark is an overabundance of dysplastic mature granulocytic cells and their immature precursors in the peripheral blood and bone marrow. For a long time, aCML had no known molecular markers, and was characterized only by the genetic features it lacked, including the defining BCR-ABL1 fusion transcript seen in the superficially morphologically similar chronic myeloid leukemia (CML). Furthermore, some classical non-CML myeloproliferative neoplasms (MPNs), including post-polycythemic/post-essential thrombocythemic myelofibrosis, accelerated-phase MPNs, and chronic neutrophilic leukemia (CNL), may mimic the clinical and laboratory features of aCML. An explosion of genetic research has identified recurrent mutations in SETBP1 and/or ETNK1 in up to one third of patients with aCML. Mutations in these genes not only shed light on possible mechanisms of aCML oncogenesis, but are also relatively specific for aCML, making them potentially useful confirmatory markers. As such, the 2016 revision to the WHO classification of hematopoietic neoplasms indicates that a diagnosis of aCML is supported by the presence of SETBP1 and/or ETNK1 mutations. CSF3R mutations, once thought to be frequent in aCML, are now considered uncommon, occurring in fewer than 10% of cases. If detected, a CSF3R mutation should prompt consideration of alternative diagnoses, particularly CNL. Patients with aCML have also been found to harbor mutations in numerous other genes that are not unique to aCML, but rather, are commonly mutated across the broad spectrum of myeloid neoplasms. Although these mutations have little specific diagnostic utility, they may shed light on the pathogenesis of aCML and could carry increasing significance with the development of novel, targeted therapies. At present, therapeutic options for patients with aCML are limited, and the disease carries a poor prognosis. Although our limited understanding of aCML has improved drastically in recent years, much more research is needed to understand its molecular underpinnings and to improve patient outcomes.

Keywords

Atypical chronic myeloid leukemia (aCML) BCR-ABL1 negative Myelodysplastic syndrome/myeloproliferative neoplasms (MDS/MPN) SETBP1 ETNK1 CSF3R 

References

  1. 1.
    Zoi K, Cross NCP. Molecular pathogenesis of atypical CML, CMML and MDS/MPN-unclassifiable. Int J Hematol. 2015;101:229–42. doi: 10.1007/s12185-014-1670-3.CrossRefPubMedGoogle Scholar
  2. 2.
    Breccia M, Biondo F, Latagliata R, Carmosino I, Mandelli F, Alimena G. Identification of risk factors in atypical chronic myeloid leukemia. Haematologica. 2006;91:1566–8.PubMedGoogle Scholar
  3. 3.
    Srour SA, Devesa SS, Morton LM, Check DP, Curtis RE, Linet MS, Dores GM. Incidence and patient survival of myeloproliferative neoplasms and myelodysplastic/myeloproliferative neoplasms in the United States, 2001-12. Br J Haematol. 2016;177:331. doi: 10.1111/bjh.14061.Google Scholar
  4. 4.
    Freedman JL, Desai AV, Bailey LC, Aplenc R, Burnworth B, Zehentner BK, Teachey DT, Wertheim G. Atypical chronic myeloid leukemia in two pediatric patients: atypical CML in pediatric patients. Pediatr Blood Cancer. 2016;63:156–9. doi: 10.1002/pbc.25694.CrossRefPubMedGoogle Scholar
  5. 5.
    Hernandez JM, del Canizo MC, Cuneo A, Garcia JL, Gutierrez NC, Gonzalez M, Castoldi G, San Miguel JF. Clinical, hematological and cytogenetic characteristics of atypical chronic myeloid leukemia. Ann Oncol. 2000;11:441–4.CrossRefPubMedGoogle Scholar
  6. 6.
    Kurzrock R, Bueso-Ramos CE, Kantarjian H, Freireich E, Tucker SL, Siciliano M, Pilat S, Talpaz M. BCR rearrangement–negative chronic myelogenous leukemia revisited. J Clin Oncol. 2001;19:2915–26.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang SA, Hasserjian RP, Fox PS, Rogers HJ, Geyer JT, Chabot-Richards D, Weinzierl E, Hatem J, Jaso J, Kanagal-Shamanna R, Stingo FC, Patel KP, Mehrotra M, Bueso-Ramos C, Young KH, Dinardo CD, Verstovsek S, Tiu RV, Bagg A, Hsi ED, Arber DA, Foucar K, Luthra R, Orazi A. Atypical chronic myeloid leukemia is clinically distinct from unclassifiable myelodysplastic/myeloproliferative neoplasms. Blood. 2014;123:2645–51.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Martiat P, Michaux JL, Rodhain J. Philadelphia-negative (Ph-) chronic myeloid leukemia (CML): comparison with Ph+ CML and chronic myelomonocytic leukemia. The Groupe Francais de Cytogenetique Hematologique. Blood. 1991;78:205–11.PubMedGoogle Scholar
  9. 9.
    Shepherd PCA, Ganesan TS, Galton DAG. Haematological classification of the chronic myeloid leukaemias. Baillières Clin Haematol. 1987;1:887–906.CrossRefPubMedGoogle Scholar
  10. 10.
    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405. doi: 10.1182/blood-2016-03-643544.CrossRefPubMedGoogle Scholar
  11. 11.
    Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Theile J, Vardiman JW. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008.Google Scholar
  12. 12.
    Bennett J, Catovsky D, Daniel M, Flandrin G, Galton D, Gralnick H, Sultan C, Cox C. The chronic myeloid leukaemias: guidelines for distinguishing chronic granulocytic, atypical chronic myeloid, and chronic myelomonocytic leukaemia. Proposals by the French-American-British cooperative Leukaemia group. Br J Haematol. 1994;87:746–54.CrossRefPubMedGoogle Scholar
  13. 13.
    Dunphy CH, Orton SO, Mantell J. Relative contributions of enzyme cytochemistry and flow cytometric immunophenotyping to the evaluation of acute myeloid leukemias with a monocytic component and of flow cytometric immunophenotyping to the evaluation of absolute monocytoses. Am J Clin Pathol. 2004;122:865–74. doi: 10.1309/BH588HVG6UHN2RF2.CrossRefPubMedGoogle Scholar
  14. 14.
    Shen Q, Ouyang J, Tang G, Jabbour EJ, Garcia-Manero G, Routbort M, Konoplev S, Bueso-Ramos C, Medeiros LJ, Jorgensen JL, Wang SA. Flow cytometry immunophenotypic findings in chronic myelomonocytic leukemia and its utility in monitoring treatment response. Eur J Haematol. 2015;95:168–76. doi: 10.1111/ejh.12477.CrossRefPubMedGoogle Scholar
  15. 15.
    Orazi A, Chiu R, O’Malley DP, Czader M, Allen SL, An C, Vance GH. Chronic myelomonocytic leukemia: the role of bone marrow biopsy immunohistology. Mod Pathol. 2006;19:1536–45.CrossRefPubMedGoogle Scholar
  16. 16.
    Patnaik MM, Parikh SA, Hanson CA, Tefferi A. Chronic myelomonocytic leukaemia: a concise clinical and pathophysiological review. Br J Haematol. 2014;165:273–86. doi: 10.1111/bjh.12756.CrossRefPubMedGoogle Scholar
  17. 17.
    Minakuchi M, Kakazu N, Gorrin-Rivas MJ, Abe T, Copeland TD, Ueda K, Adachi Y. Identification and characterization of SEB, a novel protein that binds to the acute undifferentiated leukemia-associated protein SET. Eur J Biochem. 2001;268:1340–51.CrossRefPubMedGoogle Scholar
  18. 18.
    Cristobal I, Blanco FJ, Garcia-Orti L, Marcotegui N, Vicente C, Rifon J, Novo FJ, Bandres E, Calasanz MJ, Bernabeu C, Odero MD. SETBP1 overexpression is a novel leukemogenic mechanism that predicts adverse outcome in elderly patients with acute myeloid leukemia. Blood. 2010;115:615–25. doi: 10.1182/blood-2009-06-227363.CrossRefPubMedGoogle Scholar
  19. 19.
    Li M, Makkinje A, Damuni Z. The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J Biol Chem. 1996;271:11059–62.CrossRefPubMedGoogle Scholar
  20. 20.
    Grech G, Baldacchino S, Saliba C, Grixti MP, Gauci R, Petroni V, Fenech AG, Scerri C. Deregulation of the protein phosphatase 2A, PP2A in cancer: complexity and therapeutic options. Tumor Biol. 2016;37:11691. doi: 10.1007/s13277-016-5145-4.CrossRefGoogle Scholar
  21. 21.
    Oakley K, Han Y, Vishwakarma BA, Chu S, Bhatia R, Gudmundsson KO, Keller J, Chen X, Vasko V, Jenkins NA, Copeland NG, Du Y. Setbp1 promotes the self-renewal of murine myeloid progenitors via activation of Hoxa9 and Hoxa10. Blood. 2012;119:6099–108. doi: 10.1182/blood-2011-10-388710.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gambacorti-Passerini CB, Donadoni C, Parmiani A, Pirola A, Redaelli S, Signore G, Piazza V, Malcovati L, Fontana D, Spinelli R, Magistroni V, Gaipa G, Peronaci M, Morotti A, Panuzzo C, Saglio G, Usala E, Kim D-W, Rea D, Zervakis K, Viniou N, Symeonidis A, Becker H, Boultwood J, Campiotti L, Carrabba M, Elli E, Bignell GR, Papaemmanuil E, Campbell PJ, Cazzola M, Piazza R. Recurrent ETNK1 mutations in atypical chronic myeloid leukemia. Blood. 2015;125:499–503. doi: 10.1182/blood-2014-06-579466.CrossRefPubMedGoogle Scholar
  23. 23.
    Meggendorfer M, Haferlach T, Alpermann T, Jeromin S, Haferlach C, Kern W, Schnittger S. Specific molecular mutation patterns delineate chronic neutrophilic leukemia, atypical chronic myeloid leukemia, and chronic myelomonocytic leukemia. Haematologica. 2014;99:e244–6. doi: 10.3324/haematol.2014.113159.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Meggendorfer M, Bacher U, Alpermann T, Haferlach C, Kern W, Gambacorti-Passerini C, Haferlach T, Schnittger S. SETBP1 mutations occur in 9% of MDS/MPN and in 4% of MPN cases and are strongly associated with atypical CML, monosomy 7, isochromosome i(17)(q10), ASXL1 and CBL mutations. Leukemia. 2013;27:1852–60. doi: 10.1038/leu.2013.133.CrossRefPubMedGoogle Scholar
  25. 25.
    Piazza R, Valletta S, Winkelmann N, Redaelli S, Spinelli R, Pirola A, Antolini L, Mologni L, Donadoni C, Papaemmanuil E, Schnittger S, Kim D-W, Boultwood J, Rossi F, Gaipa G, De Martini GP, di Celle PF, Jang HG, Fantin V, Bignell GR, Magistroni V, Haferlach T, Pogliani EM, Campbell PJ, Chase AJ, Tapper WJ, Cross NCP, Gambacorti-Passerini C. Recurrent SETBP1 mutations in atypical chronic myeloid leukemia. Nat Genet. 2012;45:18–24. doi: 10.1038/ng.2495.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Damm F, Itzykson R, Kosmider O, Droin N, Renneville A, Chesnais V, Gelsi-Boyer V, de Botton S, Vey N, Preudhomme C, Clavert A, Delabesse E, Park S, Birnbaum D, Fontenay M, Bernard OA, Solary E. SETBP1 mutations in 658 patients with myelodysplastic syndromes, chronic myelomonocytic leukemia and secondary acute myeloid leukemias. Leukemia. 2013;27:1401–3. doi: 10.1038/leu.2013.35.CrossRefPubMedGoogle Scholar
  27. 27.
    Laborde RR, Patnaik MM, Lasho TL, Finke CM, Hanson CA, Knudson RA, Ketterling RP, Pardanani A, Tefferi A. SETBP1 mutations in 415 patients with primary myelofibrosis or chronic myelomonocytic leukemia: independent prognostic impact in CMML. Leukemia. 2013;27:2100–2. doi: 10.1038/leu.2013.97.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Makishima H, Yoshida K, Nguyen N, Przychodzen B, Sanada M, Okuno Y, Ng KP, Gudmundsson KO, Vishwakarma BA, Jerez A, Gomez-Segui I, Takahashi M, Shiraishi Y, Nagata Y, Guinta K, Mori H, Sekeres MA, Chiba K, Tanaka H, Muramatsu H, Sakaguchi H, Paquette RL, McDevitt MA, Kojima S, Saunthararajah Y, Miyano S, Shih L-Y, Du Y, Ogawa S, Maciejewski JP. Somatic SETBP1 mutations in myeloid malignancies. Nat Genet. 2013;45:942–6. doi: 10.1038/ng.2696.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pardanani A, Lasho TL, Laborde RR, Elliott M, Hanson CA, Knudson RA, Ketterling RP, Maxson JE, Tyner JW, Tefferi A. CSF3R T618I is a highly prevalent and specific mutation in chronic neutrophilic leukemia. Leukemia. 2013;27:1870–3. doi: 10.1038/leu.2013.122.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Elliott MA, Pardanani A, Hanson CA, Lasho TL, Finke CM, Belachew AA, Tefferi A. ASXL1 mutations are frequent and prognostically detrimental in CSF3R -mutated chronic neutrophilic leukemia: Asxl1 mutations are frequent and prognostically detrimental in CSF3R-mutated CNL. Am J Hematol. 2015;90:653–6. doi: 10.1002/ajh.24031.CrossRefPubMedGoogle Scholar
  31. 31.
    Gotlib J, Maxson JE, George TI, Tyner JW. The new genetics of chronic neutrophilic leukemia and atypical CML: implications for diagnosis and treatment. Blood. 2013;122:1707–11. doi: 10.1182/blood-2013-05-500959.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Thol F, Suchanek KJ, Koenecke C, Stadler M, Platzbecker U, Thiede C, Schroeder T, Kobbe G, Kade S, Löffeld P, Banihosseini S, Bug G, Ottmann O, Hofmann W-K, Krauter J, Kröger N, Ganser A, Heuser M. SETBP1 mutation analysis in 944 patients with MDS and AML. Leukemia. 2013;27:2072–5. doi: 10.1038/leu.2013.145.CrossRefPubMedGoogle Scholar
  33. 33.
    Luo K, Stroschein SL, Wang W, Chen D, Martens E, Zhou S, Zhou Q. The ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev. 1999;13:2196–206.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lykidis A, Wang J, Karim MA, Jackowski S. Overexpression of a mammalian ethanolamine-specific kinase accelerates the CDP-ethanolamine pathway. J Biol Chem. 2001;276:2174–9. doi: 10.1074/jbc.M008794200.CrossRefPubMedGoogle Scholar
  35. 35.
    Calzada E, Onguka O, Claypool SM. Phosphatidylethanolamine metabolism in health and disease. Int Rev Cell Mol Biol. Elsevier. 2016;321:29–88.CrossRefPubMedGoogle Scholar
  36. 36.
    Lasho TL, Finke CM, Zblewski D, Patnaik M, Ketterling RP, Chen D, Hanson CA, Tefferi A, Pardanani A. Novel recurrent mutations in ethanolamine kinase 1 (ETNK1) gene in systemic mastocytosis with eosinophilia and chronic myelomonocytic leukemia. Blood Cancer J. 2015;5:e275. doi: 10.1038/bcj.2014.94.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Liongue C, Ward AC. Granulocyte colony-stimulating factor receptor mutations in myeloid malignancy. Front Oncol. 2014;4:93. doi: 10.3389/fonc.2014.00093.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Maxson JE, Gotlib J, Pollyea DA, Fleischman AG, Agarwal A, Eide CA, Bottomly D, Wilmot B, McWeeney SK, Tognon CE, Pond JB, Collins RH, Goueli B, ST O, Deininger MW, Chang BH, Loriaux MM, Druker BJ, Tyner JW. Oncogenic CSF3R mutations in chronic neutrophilic leukemia and atypical CML. N Engl J Med. 2013;368:1781–90. doi: 10.1056/NEJMoa1214514.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tyner JW, Loriaux MM, Erickson H, Eide CA, Deininger J, MacPartlin M, Willis SG, Lange T, Druker BJ, Kovacsovics T, Maziarz R, Gattermann N, Deininger MW. High-throughput mutational screen of the tyrosine kinome in chronic myelomonocytic leukemia. Leukemia. 2009;23:406–9. doi: 10.1038/leu.2008.187.CrossRefPubMedGoogle Scholar
  40. 40.
    Hirsch-Ginsberg C, LeMaistre AC, Kantarjian H, Talpaz M, Cork A, Freireich EJ, Trujillo JM, Lee M-S, Stass SA. RAS mutations are rare events in Philadelphia chromosome-negative/bcr gene rearrangement-negative chronic myelogenous leukemia, but are prevalent in chronic myelomonocytic leukemia. Blood. 1990;76:1214–9.PubMedGoogle Scholar
  41. 41.
    Muramatsu H, Makishima H, Maciejewski JP. Chronic myelomonocytic leukemia and atypical chronic myeloid leukemia: novel pathogenetic lesions. Semin Oncol. 2012;39:67–73. doi: 10.1053/j.seminoncol.2011.11.004.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ernst T, Chase A, Hidalgo-Curtis C, Zoi K, Zoi C, Hochhaus A, Reiter A, Vainchenker W, Grand F, Cross NCP. Frequent inactivating mutations of TET2 and CBL are associated with acquired uniparental disomy in atypical chronic myeloid leukemia and related disorders. [abstract]. Blood. 2009;114:3258.Google Scholar
  43. 43.
    Grand FH, Hidalgo-Curtis CE, Ernst T, Zoi K, Zoi C, McGuire C, Kreil S, Jones A, Score J, Metzgeroth G, Oscier D, Hall A, Brandts C, Serve H, Reiter A, Chase AJ, Cross NCP. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood. 2009;113:6182–92. doi: 10.1182/blood-2008-12-194548.CrossRefPubMedGoogle Scholar
  44. 44.
    Fend F, Horn T, Koch I, Vela T, Orazi A. Atypical chronic myeloid leukemia as defined in the WHO classification is a JAK2 V617F negative neoplasm. Leuk Res. 2008;32:1931–5. doi: 10.1016/j.leukres.2008.04.024.CrossRefPubMedGoogle Scholar
  45. 45.
    Grand FH, Iqbal S, Zhang L, Russell NH, Chase A, Cross NCP. A constitutively active SPTBN1-FLT3 fusion in atypical chronic myeloid leukemia is sensitive to tyrosine kinase inhibitors and immunotherapy. Exp Hematol. 2007;35:1723–7. doi: 10.1016/j.exphem.2007.07.002.CrossRefPubMedGoogle Scholar
  46. 46.
    Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, Avezov E, Li J, Kollmann K, Kent DG, Aziz A, Godfrey AL, Hinton J, Martincorena I, Van Loo P, Jones AV, Guglielmelli P, Tarpey P, Harding HP, Fitzpatrick JD, Goudie CT, Ortmann CA, Loughran SJ, Raine K, Jones DR, Butler AP, Teague JW, O’Meara S, McLaren S, Bianchi M, Silber Y, Dimitropoulou D, Bloxham D, Mudie L, Maddison M, Robinson B, Keohane C, Maclean C, Hill K, Orchard K, Tauro S, M-Q D, Greaves M, Bowen D, Huntly BJP, Harrison CN, Cross NCP, Ron D, Vannucchi AM, Papaemmanuil E, Campbell PJ, Green AR. Somatic CALR mutations in Myeloproliferative neoplasms with Nonmutated JAK2. N Engl J Med. 2013;369:2391–405. doi: 10.1056/NEJMoa1312542.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, Waghorn K, Zoi K, Ross FM, Reiter A, Hochhaus A, Drexler HG, Duncombe A, Cervantes F, Oscier D, Boultwood J, Grand FH, Cross NCP. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42:722–6. doi: 10.1038/ng.621.CrossRefPubMedGoogle Scholar
  48. 48.
    Jabbour E, Kantarjian H, Cortes J, Thomas D, Garcia-Manero G, Ferrajoli A, Faderl S, Richie MA, Beran M, Giles F, Verstovsek S. PEG-IFN-α-2b therapy in BCR-ABL–negative myeloproliferative disorders: final result of a phase 2 study. Cancer. 2007;110:2012–8. doi: 10.1002/cncr.23018.CrossRefPubMedGoogle Scholar
  49. 49.
    Koldehoff M, Beelen DW, Trenschel R, Steckel NK, Peceny R, Ditschkowski M, Ottinger H, Elmaagacli AH. Outcome of hematopoietic stem cell transplantation in patients with atypical chronic myeloid leukemia. Bone Marrow Transplant. 2004;34:1047–50. doi: 10.1038/sj.bmt.1704686.CrossRefPubMedGoogle Scholar
  50. 50.
    Lim S-N, Lee J-H, Lee J-H, Kim D-Y, Kim SD, Kang Y-A, Lee Y-S, Lee K-H. Allogeneic hematopoietic cell transplantation in adult patients with myelodysplastic/myeloproliferative neoplasms. Blood Res. 2013;48:178. doi: 10.5045/br.2013.48.3.178.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mittal P, Saliba RM, Giralt SA, Shahjahan M, Cohen AI, Karandish S, Onida F, Beran M, Champlin RE, de Lima M. Allogeneic transplantation: a therapeutic option for myelofibrosis, chronic myelomonocytic leukemia and Philadelphia-negative/BCR-ABL-negative chronic myelogenous leukemia. Bone Marrow Transplant. 2004;33:1005–9. doi: 10.1038/sj.bmt.1704472.CrossRefPubMedGoogle Scholar
  52. 52.
    Khanna V, Pierce ST, Dao K-HT, Tognon CE, Hunt DE, Junio B, Tyner JW, Druker BJ. Durable disease control with MEK inhibition in a patient with NRAS-mutated atypical chronic myeloid leukemia. Cureus. 2015;7:e414. doi: 10.7759/cureus.414.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Dao K-HT, Solti MB, Maxson JE, Winton EF, Press RD, Druker BJ, Tyner JW. Significant clinical response to JAK1/2 inhibition in a patient with CSF3R-T618I-positive atypical chronic myeloid leukemia. Leuk Res Rep. 2014;3:67–9. doi: 10.1016/j.lrr.2014.07.002.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Fleischman AG, Maxson JE, Luty SB, Agarwal A, Royer LR, Abel ML, MacManiman JD, Loriaux MM, Druker BJ, Tyner JW. The CSF3R T618I mutation causes a lethal neutrophilic neoplasia in mice that is responsive to therapeutic JAK inhibition. Blood. 2013;122:3628–31. doi: 10.1182/blood-2013-06-509976.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ammatuna E, Eefting M, van Lom K, Kavelaars FF, Valk PJM, Touw IP. Atypical chronic myeloid leukemia with concomitant CSF3R T618I and SETBP1 mutations unresponsive to the JAK inhibitor ruxolitinib. Ann Hematol. 2015;94:879–80. doi: 10.1007/s00277-014-2272-0.CrossRefPubMedGoogle Scholar
  56. 56.
    Langabeer SE, McCarron SL, Haslam K, O’Donovan MT, Conneally E. The CSF3R T618I mutation as a disease-specific marker of atypical CML post allo-SCT. Bone Marrow Transplant. 2014;49:843–4. doi: 10.1038/bmt.2014.35.CrossRefPubMedGoogle Scholar
  57. 57.
    Cheson BD, Greenberg PL, Bennett JM, Lowenberg B, Wijermans PW, Nimer SD, Pinto A, Beran M, de Witte TM, Stone RM, Mittelman M, Sanz GF, Gore SD, Schiffer CA, Kantarjian H. Clinical application and proposal for modification of the international Working group (IWG) response criteria in myelodysplasia. Blood. 2006;108:419–25. doi: 10.1182/blood-2005-10-4149.CrossRefPubMedGoogle Scholar
  58. 58.
    Tefferi A, Cervantes F, Mesa R, Passamonti F, Verstovsek S, Vannucchi AM, Gotlib J, Dupriez B, Pardanani A, Harrison C, Hoffman R, Gisslinger H, Kröger N, Thiele J, Barbui T, Barosi G. Revised response criteria for myelofibrosis: international Working group-Myeloproliferative neoplasms research and treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood. 2013;122:1395–8. doi: 10.1182/blood-2013-03-488098.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Savona MR, Malcovati L, Komrokji R, Tiu RV, Mughal TI, Orazi A, Kiladjian J-J, Padron E, Solary E, Tibes R, Itzykson R, Cazzola M, Mesa R, Maciejewski J, Fenaux P, Garcia-Manero G, Gerds A, Sanz G, Niemeyer CM, Cervantes F, Germing U, Cross NCP, List AF, on behalf of the MDS/MPN International Working Group. An international consortium proposal of uniform response criteria for myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in adults. Blood. 2015;125:1857–1865. doi:  10.1182/blood-2014-10-607341.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineHospital of the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations