Tissue Bioengineering in Transplantation

  • Ravi Katari
  • Lauren Edgar
  • Kevin Enck
  • Andrea Peloso
  • Riccardo Tamburrini
  • Giuseppe OrlandoEmail author


Organ transplantation has emerged in recent decades as one of the most effective modalities for the treatment of end-stage organ disease. Over 100,000 transplants are performed worldwide each year; however, the supply has not been able to keep up with increasing demand. Furthermore, transplant recipients are committed to a lifelong regimen of brutal immunosuppressive medications that themselves carry significant side effect profiles, influencing clinical outcomes. Recent advances in the fields of tissue engineering and regenerative medicine are beginning to offer alternative solutions that could potentially improve the longevity, functionality, and biocompatibility profiles of transplants. Decellularization technology to produce extracellular matrix scaffolds represents one of the most promising strategies currently under investigation. Such methods can produce bioengineered, transplantable organs using autologous cells that would bypass the need for immunosuppression and its associated side effects. Furthermore, bioengineering strategies in general are not bound by supply constraints imposed by organ donation.


Transplantation Bioengineering and regeneration Scaffold ECM Decellularization Stem cells 



Extracellular matrix


Embryonic stem cell


Induced pluripotent stem cell


Mesenchymal stem cell


Polyethylene glycol


Tissue engineering


  1. 1.
    World Health Organization. (2013). World health statistic. Geneva: World Health Organization.Google Scholar
  2. 2.
    World Health Organization. GKT1 activity and practices. Accessed 24 June 2015.
  3. 3.
    National Kidney Foundation. Organ donation and transplant statistics. Accessed 24 June 2015.
  4. 4.
    Organ Procurement and Transplantation Network. Accessed 24 June 2015.
  5. 5.
    Katari, R., Peloso, A., & Orlando, G. (2014). Tissue engineering and regenerative medicine: Semantic considerations for an evolving paradigm. Frontiers in Bioengineering and Biotechnology, 2, 57.PubMedGoogle Scholar
  6. 6.
    Katari, R. S., Peloso, A., & Orlando, G. (2014). Tissue engineering. Advances in Surgery, 48, 137–154.PubMedCrossRefGoogle Scholar
  7. 7.
    Orlando, G., Soker, S., Stratta, R. J., & Atala, A. (2013). Will regenerative medicine replace transplantation? Cold Spring Harbor Perspectives in Medicine, 3(8).PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Peloso, A., Dhal, A., Zambon, J. P., et al. (2015). Current achievements and future perspectives in whole-organ bioengineering. Stem Cell Research & Therapy, 6, 107.CrossRefGoogle Scholar
  9. 9.
    Wolfe, R. A., Ashby, V. B., Milford, E. L., et al. (1999). Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. The New England Journal of Medicine, 341(23), 1725–1730.PubMedCrossRefGoogle Scholar
  10. 10.
    Abecassis, M., Bartlett, S. T., Collins, A. J., et al. (2008). Kidney transplantation as primary therapy for end-stage renal disease: A National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) conference. Clinical Journal of the American Society of Nephrology, 3(2), 471–480.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    ERA-EDTA Annual Report. 2012. Accessed 10 Mar 2016.
  12. 12.
    National Kidney Foundation. Organ donation and transplant statistics. Accessed 10 Mar 2016.
  13. 13.
    Organ Procurement and Transplantation Network. Accessed 10 Mar 2016.
  14. 14.
    Organ donation and transplantation activity report 2012. accessed 10 Mar 2016.
  15. 15.
    Shin, E., Kwon, S. W., Yang, W. S., et al. (2015). Long-term outcomes of ABO-incompatible living donor kidney transplantation: A comparative analysis. Transplantation Proceedings, 47(6), 1720–1726.PubMedCrossRefGoogle Scholar
  16. 16.
    Coilly, A., & Samuel, D. (2015). Pros and Cons: Usage of organs from donors infected with hepatitis C virus – Revision in the direct acting antiviral era. Journal of Hepatology.Google Scholar
  17. 17.
    Perico, N., & Remuzzi, G. (2012). Chronic kidney disease: A research and public health priority. Nephrology, Dialysis, Transplantation, 27(suppl 3), iii19–iii26.PubMedCrossRefGoogle Scholar
  18. 18.
    Thomas, L. (1971). Notes of a biology-watcher: The technology of medicine. The New England Journal of Medicine, 285, 1366–1368.PubMedCrossRefGoogle Scholar
  19. 19.
    Brown, E. (1996). Halfway technologies. Physician Executive, 22(12), 44–45.PubMedGoogle Scholar
  20. 20.
    Zsom, L., Wagner, L., & Fülöp, T. (2015). Minimization vs tailoring: Where do we stand with personalized immunosuppression during renal transplantation in 2015? World Journal of Transplantation, 5(3), 73–80.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Nyumura, I., Honda, K., Tanabe, K., Teraoka, S., & Iwamoto, Y. (2012). Early histologic lesions and risk factors for recurrence of diabetic kidney disease after kidney transplantation. Transplantation, 94(6), 612–619.PubMedCrossRefGoogle Scholar
  22. 22.
    Mitchell, O., & Gurakar, A. (2015). Management of hepatitis C post-Liver transplantation: A comprehensive review. Journal of Clinical and Translational Hepatology, 3(2), 140–148.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Manzia, T. M., Angelico, R., Ciano, P., et al. (2014). Impact of immunosuppression minimization and withdrawal in long-term hepatitis C virus liver transplant recipients. World Journal of Gastroenterology, 20(34), 12217–12225.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Heidary Rouchi, A., & Mahdavi-Mazdeh, M. (2015). Regenerative medicine in organ and tissue transplantation: Shortly and practically achievable? International Journal of Organ Transplantation Medicine, 6(3), 93–98.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Dutkowski, P., de Rougemont, O., & Clavien, P. A. (2008 Oct). Alexis Carrel: Genius, innovator and ideologist. American Journal of Transplantation : Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 8(10), 1998–2003.CrossRefGoogle Scholar
  26. 26.
    Orlando, G., Soker, S., & Wood, K. (2009). Operational tolerance after liver transplantation. Journal of Hepatology, 50(6), 1247–1257.PubMedCrossRefGoogle Scholar
  27. 27.
    Orlando, G. (2010). Finding the right time for weaning off immunosuppression in solid organ transplant recipients. Expert Review of Clinical Immunology, 6(6), 879–892.PubMedCrossRefGoogle Scholar
  28. 28.
    Schroeder RA, Marroquin CE, Kuo PC. Tolerance and the “Holy Grail” of transplantation. The Journal of Surgical Research 2003;111(1):109-119.PubMedCrossRefGoogle Scholar
  29. 29.
    Dharnidharka, V. R., Stablein, D. M., & Harmon, W. E. (2004). Post-transplant infections now exceed acute rejection as cause for hospitalization: A report of the NAPRTCS. American Journal of Transplantation, 4(3), 384–389.PubMedCrossRefGoogle Scholar
  30. 30.
    U.S. Renal Data System. (2013). USRDS 2013 Annual Data Report: Atlas of CKD & ESRD, Volume 2; Chapter 7: Transplantation. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. Accessed 11 Mar 2016.
  31. 31.
    Engels, E. A., Pfeiffer, R. M., Fraumeni, J. F., et al. (2011). Spectrum of cancer risk among US solid organ transplant recipients. Journal of the American Medical Association, 306(17), 1891–1901.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bouwes Bavinck, J. N., Hardie, D. R., Green, A., et al. (1996). The risk of skin cancer in renal transplant recipients in Queensland, Australia. A follow-up study. Transplantation, 61(5), 715–721.PubMedCrossRefGoogle Scholar
  33. 33.
    Smith, J. M., Skeans, M. A., Horslen, S. P., et al. (2015). OPTN/SRTR 2013 annual data report: Intestine. American Journal of Transplantation, 15(Suppl 2), 1–16.PubMedCrossRefGoogle Scholar
  34. 34.
    Kandaswamy, R., Skeans, M. A., Gustafson, S. K., et al. (2015). OPTN/SRTR 2013 annual data report: Pancreas. American Journal of Transplantation, 15(Suppl 2), 1–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Valapour, M., Skeans, M. A., Heubner, B. M., Smith, J. M., Hertz, M. I., Edwards, L. B., Cherikh, W. S., Callahan, E. R., Snyder, J. J., Israni, A. K., et al. (2015). OPTN/SRTR 2013 annual data report: Lung. American Journal of Transplantation, 15, 1–28.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Colvin-Adams, M., Smith, J. M., Heubner, B. M., Skeans, M. A., Edwards, L. B., Waller, C. D., Callahan, E. R., Snyder, J. J., Israni, A. K., & Kasiske, B. L. (2015). OPTN/SRTR 2013 annual data report: Heart. American Journal of Transplantation, 15, 1–28.CrossRefPubMedGoogle Scholar
  37. 37.
    Kim, W. R., Lake, J. R., Smith, J. M., Skeans, M. A., Schladt, D. P., Edwards, E. B., Harper, A. M., Wainright, J. L., Snyder, J. J., Israni, A. K., et al. (2015). OPTN/SRTR 2013 annual data report: Liver. American Journal of Transplantation, 15, 1–28.PubMedCrossRefGoogle Scholar
  38. 38.
    Matas, A. J., Smith, J. M., Skeans, M. A., et al. (2015). OPTN/SRTR 2013 annual data report: Kidney. American Journal of Transplantation, 15(Suppl 2), 1–34.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Filipponi, F., Pisati, R., Cavicchini, G., Ulivieri, M. I., Ferrara, R., & Mosca, F. (2003). Cost and outcome analysis and cost determinants of liver transplantation in a European National Health Service hospital. Transplantation, 75(10), 1731–1736.PubMedCrossRefGoogle Scholar
  40. 40.
    Irwin, F. D., Wu, C., Bannister, W. M., et al. (2016). A commercial transplant network’s perspective of value in solid organ transplantation: Strategizing for value in transplant care. Transplantation Reviews (Orlando, Fla.) PubMedCrossRefGoogle Scholar
  41. 41.
    United States Cong. House. Committee on Energy and Commerce, Subcommittee on Health. (2013, June 28). Examining reforms to improve the medicare part B drug program for seniors. Washington D.C. (statement of the American Society of Transplant Surgeons). Available at Accessed 14 Mar 2016.
  42. 42.
    Sack K. 2009, September 13. U.S. cost-saving policy forces new kidney transplant. The New York Times.Google Scholar
  43. 43.
    Evans, R. W., Applegate, W. H., Briscoe, D. M., et al. (2010). Cost-related immunosuppressive medication nonadherence among kidney transplant recipients. Clinical Journal of the American Society of Nephrology, 5(12), 2323–2328.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Marx, V. (2015). Tissue engineering: Organs from the lab. Nature, 522(7556), 373–377.PubMedCrossRefGoogle Scholar
  45. 45.
    He, M., & Callanan, A. (2013). Comparison of methods for whole-organ decellularization in tissue engineering of bioartificial organs. Tissue Engineering. Part B, Reviews, 19(3), 194–208.PubMedCrossRefGoogle Scholar
  46. 46.
    Goldfarb, D. A. (2005). Tissue engineering stem cells, and cloning: Opportunities for regenerative medicine. The Journal of Urology, 173(4), 1431.PubMedCrossRefGoogle Scholar
  47. 47.
    Orlando, G., Soker, S., & Stratta, R. J. (2013). Organ bioengineering and regeneration as the new Holy Grail for organ transplantation. Annals of Surgery, 258(2), 221–232.PubMedCrossRefGoogle Scholar
  48. 48.
    Orlando, G., Wood, K. J., De Coppi, P., Baptista, P. M., Binder, K. W., Bitar, K. N., Breuer, C., Burnett, L., Christ, G., Farney, A., Figliuzzi, M., Holmes, J. H., Koch, K., Macchiarini, P., Mirmalek Sani, S.-H., Opara, E., Remuzzi, A., Rogers, J., Saul, J. M., Seliktar, D., Shapira-Schweitzer, K., Smith, T., Solomon, D., Van Dyke, M., Yoo, J. J., Zhang, Y., Atala, A., Stratta, R. J., & Soker, S. (2012). Regenerative medicine as applied to general surgery. Annals of Surgery, 255(5), 867–880.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Orlando, G., Wood, K. J., Stratta, R. J., Yoo, J. J., Atala, A., & Soker, S. (2011). Regenerative medicine and organ transplantation: Past, present, and future. Transplantation, 91(12), 1310–1317.PubMedCrossRefGoogle Scholar
  50. 50.
    Orlando, G., Baptista, P., Birchall, M., De Coppi, P., Farney, A., Guimaraes-Souza, N. K., Opara, E., Rogers, J., Seliktar, D., Shapira-Schweitzer, K., Stratta, R. J., Atala, A., Wood, K. J., & Soker, S. (2011). Regenerative medicine as applied to solid organ transplantation: Current status and future challenges. Transplant International, 24(3), 223–232.PubMedCrossRefGoogle Scholar
  51. 51.
    Badylak, S. F., Weiss, D. J., Caplan, A., & Macchiarini, P. (2012). Engineered whole organs and complex tissues. Lancet, 379(9819), 943–952.PubMedCrossRefGoogle Scholar
  52. 52.
    Vacanti, J. P., Morse, M. A., Saltzman, W. M., et al. (1988). Selective cell transplantation using bioabsorbable artificial polymers as matrices. Journal of Pediatric Surgery, 23, 3–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Vacanti, J. P. (1988). Beyond transplantation. Third annual Samuel Jason Mixter lecture. Archives of Surgery, 123, 545–549.PubMedCrossRefGoogle Scholar
  54. 54.
    Shinoka, T., Imai, Y., & Ikada, Y. (2001). Transplantation of a tissue-engineered pulmonary artery. The New England Journal of Medicine, 344, 532–533.CrossRefGoogle Scholar
  55. 55.
    Macchiarini, P., Jungebluth, P., Go, T., et al. (2008). Clinical transplantation of a tissue-engineered airway. Lancet, 372, 2023–2030.PubMedCrossRefGoogle Scholar
  56. 56.
    Jungebluth, P., Alici, E., Baiguera, S., et al. (2011). Tracheobronchial transplantation with a stem-cell-seeded bioartificial nanocomposite: A proof-of-concept study. Lancet, 378, 1997–2004.PubMedCrossRefGoogle Scholar
  57. 57.
    Elliott, M. J., De Coppi, P., Speggiorin, S., et al. (2012). Stem-cell-based, tissue engineered tracheal replacement in a child: A 2-year follow-up study. Lancet, 380, 994–1000.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Gonfiotti, A., Jaus, M. O., Barale, D., et al. (2014). The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet, 383(9913), 238–244.PubMedCrossRefGoogle Scholar
  59. 59.
    Raya-rivera, A., Esquiliano, D. R., Yoo, J. J., Lopez-bayghen, E., Soker, S., & Atala, A. (2011). Tissue-engineered autologous urethras for patients who need reconstruction: An observational study. Lancet, 377(9772), 1175–1182.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., & Retik, A. B. (2006). Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet, 367(9518), 1241–1246.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Raya-rivera, A. M., Esquiliano, D., Fierro-pastrana, R., et al. (2014). Tissue-engineered autologous vaginal organs in patients: A pilot cohort study. Lancet, 384(9940), 329–336.PubMedCrossRefGoogle Scholar
  62. 62.
    Lu, L., Zhu, X., Valenzuela, R. G., Currier, B. L., & Yaszemski, M. J. (2001). Biodegradable polymer scaffolds for cartilage tissue engineering. Clinical Orthopaedics and Related Research, (391 Suppl), S251–S270.CrossRefGoogle Scholar
  63. 63.
    Chen, F., Yoo, J. J., & Atala, A. (1999). Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology, 54(3), 407–410.PubMedCrossRefGoogle Scholar
  64. 64.
    Ross, E. A., Williams, M. J., Hamazaki, T., Terada, N., Clapp, W. L., Adin, C., et al. (2009). Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds. J Am Soc Nephrol, 20(11), 2338–2347.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Bonandrini, B., Figliuzzi, M., Papadimou, E., et al. (2014). Recellularization of well-preserved acellular kidney scaffold using embryonic stem cells. Tissue Engineering. Part A, 20(9–10), 1486–1498.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Gjorevski, N., Ranga, A., & Lutolf, M. P. (2014). Bioengineering approaches to guide stem cell-based organogenesis. Development, 141(9), 1794–17804.PubMedCrossRefGoogle Scholar
  67. 67.
    Brivanlou, A. H., Gage, F. H., Jaenisch, R., Jessell, T., Melton, D., & Rossant, J. (2003). Stem cells. Setting standards for human embryonic stem cells. Science, 300(5621), 913–916.PubMedCrossRefGoogle Scholar
  68. 68.
    Kehat, I., Kenyagin-karsenti, D., Snir, M., et al. (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. The Journal of Clinical Investigation, 108(3), 407–414.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Levenberg, S., Golub, J. S., Amit, M., Itskovitz-eldor, J., & Langer, R. (2002). Endothelial cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4391–4396.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Reubinoff, B. E., Itsykson, P., Turetsky, T., et al. (2001). Neural progenitors from human embryonic stem cells. Nature Biotechnology, 19(12), 1134–1140.PubMedCrossRefGoogle Scholar
  71. 71.
    Assady, S., Maor, G., Amit, M., Itskovitz-eldor, J., Skorecki, K. L., & Tzukerman, M. (2001). Insulin production by human embryonic stem cells. Diabetes, 50(8), 1691–1697.PubMedCrossRefGoogle Scholar
  72. 72.
    Narayanan, K., Schumacher, K. M., Tasnim, F., et al. (2013). Human embryonic stem cells differentiate into functional renal proximal tubular-like cells. Kidney International, 83(4), 593–603.PubMedCrossRefGoogle Scholar
  73. 73.
    Denker, H. W. (2006). Potentiality of embryonic stem cells: An ethical problem even with stem cell source. Journal of Medical Ethics, 32, 665–671.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Aldahmash, A., Atteya, M., Elsafadi, M., Al-Nbaheen, M., Al-Mubarak, H. A., Vishnubalaji, R., Al-Roalle, A., Al-Harbi, S., Manikandan, M., Matthaei, K. I., & Mahmood, A. (2013). Teratoma formation in immunocompetent mice after syngeneic and allogeneic implantation of germline capable mouse embryonic stem cells. Asian Pacific Journal of Cancer Prevention, 14, 5705–5711.PubMedCrossRefGoogle Scholar
  75. 75.
    Aasen, T., Raya, A., Barrero, M. J., et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 26(11), 1276–1284.PubMedCrossRefGoogle Scholar
  76. 76.
    Wang, J., Gu, Q., Hao, J., et al. (2013). Generation of induced pluripotent stem cells with high efficiency from human umbilical cord blood mononuclear cells. Genomics, Proteomics & Bioinformatics, 11(5), 304–131.CrossRefGoogle Scholar
  77. 77.
    Spradling, A., Drummond-barbosa, D., & Kai, T. (2001). Stem cells find their niche. Nature, 414(6859), 98–104.CrossRefPubMedGoogle Scholar
  78. 78.
    Li, L., & Xie, T. (2005). Stem cell niche: Structure and function. Annual Review of Cell and Developmental Biology, 21, 605–631.PubMedCrossRefGoogle Scholar
  79. 79.
    Fuchs, E. (2008). Skin stem cells: Rising to the surface. The Journal of Cell Biology, 180(2), 273–284.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Sousa, B. R., Parreira, R. C., Fonseca, E. A., Amaya, M. J., Tonelli, F. M., Lacerda, S. M., Lalwani, P., Santos, A. K., Gomes, K. N., Ulrich, H., Kihara, A. H., & Resende, R. R. (2014). Human adult stem cells from diverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry. Part A, 85, 43–77.CrossRefGoogle Scholar
  81. 81.
    Van der flier, L. G., & Clevers, H. (2009). Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annual Review of Physiology, 71, 241–260.PubMedCrossRefGoogle Scholar
  82. 82.
    Bussolati, B., Bruno, S., Grange, C., et al. (2005). Isolation of renal progenitor cells from adult human kidney. The American Journal of Pathology, 166(2), 545–555.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lindroos, B., Suuronen, R., & Miettinen, S. (2011). The potential of adipose stem cells in regenerative medicine. Stem Cell Reviews, 7(2), 269–291.PubMedCrossRefGoogle Scholar
  84. 84.
    Strom, T. B., Field, L. J., & Ruediger, M. (2002). Allogeneic stem cells, clinical transplantation and the origins of regenerative medicine. Current Opinion in Immunology, 14(5), 601–605.PubMedCrossRefGoogle Scholar
  85. 85.
    Simons, B. D., & Clevers, H. (2011). Stem cell self-renewal in intestinal crypt. Experimental Cell Research, 317(19), 2719–2724.PubMedCrossRefGoogle Scholar
  86. 86.
    Bitar, K. N., & Raghavan, S. (2012). Intestinal tissue engineering: Current concepts and future vision of regenerative medicine in the gut. Neurogastroenterology and Motility, 24(1), 7–19.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Speer, A. L., Sala, F. G., Matthews, J. A., & Grikscheit, T. C. (2011). Murine tissue-engineered stomach demonstrates epithelial differentiation. The Journal of Surgical Research, 171(1), 6–14.PubMedCrossRefGoogle Scholar
  88. 88.
    Maemura, T., Shin, M., Kinoshita, M., et al. (2008). A tissue-engineered stomach shows presence of proton pump and G-cells in a rat model, resulting in improved anemia following total gastrectomy. Artificial Organs, 32(3), 234–239.PubMedCrossRefGoogle Scholar
  89. 89.
    Maemura, T., Shin, M., Sato, M., Mochizuki, H., & Vacanti, J. P. (2003). A tissue-engineered stomach as a replacement of the native stomach. Transplantation, 76(1), 61–65.PubMedCrossRefGoogle Scholar
  90. 90.
    Maemura, T., Kinoshita, M., Shin, M., et al. (2012). Assessment of a tissue-engineered gastric wall patch in a rat model. Artificial Organs, 36(4), 409–417.PubMedCrossRefGoogle Scholar
  91. 91.
    Chen, M. K., & Beierle, E. A. (2004). Animal models for intestinal tissue engineering. Biomaterials, 25(9), 1675–1681.PubMedCrossRefGoogle Scholar
  92. 92.
    Hecker, L., Baar, K., Dennis, R. G., & Bitar, K. N. (2005). Development of a three-dimensional physiological model of the internal anal sphincter bioengineered in vitro from isolated smooth muscle cells. American Journal of Physiology. Gastrointestinal and Liver Physiology, 289(2), G188–G196.PubMedCrossRefGoogle Scholar
  93. 93.
    Somara, S., Gilmont, R. R., Dennis, R. G., & Bitar, K. N. (2009). Bioengineered internal anal sphincter derived from isolated human internal anal sphincter smooth muscle cells. Gastroenterology, 137(1), 53–61.PubMedCrossRefGoogle Scholar
  94. 94.
    Grikscheit, T. C., Siddique, A., Ochoa, E. R., et al. (2004). Tissue-engineered small intestine improves recovery after massive small bowel resection. Annals of Surgery, 240(5), 748–754.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Chen, M. K., & Badylak, S. F. (2001). Small bowel tissue engineering using small intestinal submucosa as a scaffold. The Journal of Surgical Research, 99(2), 352–358.PubMedCrossRefGoogle Scholar
  96. 96.
    Hori, Y., Nakamura, T., Kimura, D., et al. (2002). Experimental study on tissue engineering of the small intestine by mesenchymal stem cell seeding. The Journal of Surgical Research, 102(2), 156–160.PubMedCrossRefGoogle Scholar
  97. 97.
    Finkbeiner, S. R., & Spence, J. R. (2013). A gutsy task: Generating intestinal tissue from human pluripotent stem cells. Digestive Diseases and Sciences, 58(5), 1176–1184.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Spence, J. R., Mayhew, C. N., Rankin, S. A., et al. (2011). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470(7332), 105–109.PubMedCrossRefGoogle Scholar
  99. 99.
    Watson, C. L., Mahe, M. M., Múnera, J., et al. (2014). An in vivo model of human small intestine using pluripotent stem cells. Nature Medicine, 20(11), 1310–1314.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wieck, M. M., El-nachef, W. N., Hou, X., et al. (2016). Human and murine tissue-engineered colon exhibit diverse neuronal subtypes and can be populated by enteric nervous system progenitor cells when donor colon is aganglionic. Tissue Engineering. Part A, 22(1–2), 53–64.PubMedCrossRefGoogle Scholar
  101. 101.
    Resende, R. R., Fonseca, E. A., Tonelli, F. M. P., Sousa, B. R., Santos, A. K., Gomes, K. N., Guatimosim, S., Kihara, A. H., & Ladeira, L. O. (2014). Scale/topography of substrates surface resembling extracellular matrix for tissue engineering. Journal of Biomedical Nanotechnology, 10, 1157–1193.PubMedCrossRefGoogle Scholar
  102. 102.
    Eckardt, K. U., Coresh, J., Devuyst, O., et al. (2013). Evolving importance of kidney disease: From subspecialty to global health burden. Lancet, 382(9887), 158–169.PubMedCrossRefGoogle Scholar
  103. 103.
    Hoerger, T. J., Simpson, S. A., Yarnoff, B. O., Pavkov, M. E., Ríos Burrows, N., Saydah, S. H., Williams, D. E., & Zhuo, X. (2015). The future burden of CKD in the United States: A simulation model for the CDC CKD initiative. American Journal of Kidney Diseases, 65, 403–411.PubMedCrossRefGoogle Scholar
  104. 104.
    Zambon, J. P., Magalhaes, R. S., Ko, I., et al. (2014). Kidney regeneration: Where we are and future perspectives. World Journal of Nephrology, 3(3), 24–30.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Salvatori, M., Peloso, A., Katari, R., & Orlando, G. (2014). Regeneration and bioengineering of the kidney: Current status and future challenges. Current Urology Reports, 15(1), 379.PubMedCrossRefGoogle Scholar
  106. 106.
    Rinkevich, Y., Montoro, D. T., Contreras-trujillo, H., et al. (2014). Vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Reports, 7(4), 1270–1283.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Nagaike, M., Hirao, S., Tajima, H., et al. (1991). Renotropic functions of hepatocyte growth factor in renal regeneration after unilateral nephrectomy. The Journal of Biological Chemistry, 266(34), 22781–22784.PubMedGoogle Scholar
  108. 108.
    Cochrane, A. L., Kett, M. M., Samuel, C. S., et al. (2005). Renal structural and functional repair in a mouse model of reversal of ureteral obstruction. Journal of the American Society of Nephrology, 16(12), 3623–3630.PubMedCrossRefGoogle Scholar
  109. 109.
    Davidson, A. J. (2011). Uncharted waters: Nephrogenesis and renal regeneration in fish and mammals. Pediatric Nephrology, 26(9), 1435–1443.PubMedCrossRefGoogle Scholar
  110. 110.
    Lam, A. Q., & Bonventre, J. V. (2015). Regenerating the nephron with human pluripotent stem cells. Current Opinion in Organ Transplantation, 20(2), 187–192.PubMedCrossRefGoogle Scholar
  111. 111.
    Little, M. H. (2006). Regrow or repair: Potential regenerative therapies for the kidney. Journal of the American Society of Nephrology, 17(9), 2390–2401.PubMedCrossRefGoogle Scholar
  112. 112.
    Pleniceanu, O., Harari-Steinberg, O., & Dekel, B. (2010). Concise review: Kidney stem/progenitor cells: Differentiate, sort out, or reprogram? Stem Cells, 28(9), 1649–1660.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Romagnani, P., Lasagni, L., & Remuzzi, G. (2013). Renal progenitors: An evolutionary conserved strategy for kidney regeneration. Nature Reviews. Nephrology, 9(3), 137–146.PubMedCrossRefGoogle Scholar
  114. 114.
    Zhang, Y., McNeill, E., Tian, H., Soker, S., Andersson, K.-E., Yoo, J. J., & Atala, A. (2008). Urine derived cells are a potential source for urological tissue reconstruction. The Journal of Urology, 180, 2226–2233.PubMedCrossRefGoogle Scholar
  115. 115.
    Xing, L., Cui, R., Peng, L., et al. (2014). Mesenchymal stem cells, not conditioned medium, contribute to kidney repair after ischemia-reperfusion injury. Stem Cell Research & Therapy, 5(4), 101.CrossRefGoogle Scholar
  116. 116.
    Hauser, P. V., de Fazio, R., Bruno, S., et al. (2010). Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery. The American Journal of Pathology, 177, 2011–2021.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Sedrakyan, S., da Sacco, S., Milanesi, A., et al. (2012). Injection of amniotic fluid stem cells delays progression of renal fibrosis. Journal of the American Society of Nephrology, 23, 661–673.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Lee, P. Y., Chien, Y., Chiou, G. Y., Lin, C. H., Chiou, C. H., & Tarng, D. C. (2012). Induced pluripotent stem cells without c-Myc attenuate acute kidney injury via downregulating the signaling of oxidative stress and inflammation in ischemia-reperfusion rats. Cell Transplantation, 21, 2569–2585.PubMedCrossRefGoogle Scholar
  119. 119.
    Taguchi, A., Kaku, Y., Ohmori, T., et al. (2014). Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell, 14(1), 53–67.PubMedCrossRefGoogle Scholar
  120. 120.
    Abrahamson, D. R., St John, P. L., Pillion, D. J., & Tucker, D. C. (1991). Glomerular development in intraocular and intrarenal grafts of fetal kidneys. Laboratory Investigation, 64(5), 629–639.PubMedGoogle Scholar
  121. 121.
    Woolf, A. S., Palmer, S. J., Snow, M. L., & Fine, L. G. (1990). Creation of a functioning chimeric mammalian kidney. Kidney International, 38(5), 991–997.PubMedCrossRefGoogle Scholar
  122. 122.
    Rosines, E., Johkura, K., Zhang, X., Schmidt, H. J., De Cambre, M., Bush, K. T., & Nigam, S. K. (2010). Constructing kidney-like tissues from cells based on programs for organ development: Toward a method of in vitro tissue engineering of the kidney. Tissue Engineering Part A, 16, 2441–2455.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Imberti, B., Corna, D., Rizzo, P., et al. (2015). Renal primordia activate kidney regenerative events in a rat model of progressive renal disease. PLoS ONE, 10(3), e0120235.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Nakayama, K. H., Batchelder, C. A., Lee, C. I., & Tarantal, A. F. (2010). Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering. Tissue Engineering. Part A, 16(7), 2207–2216.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Sullivan, D. C., Mirmalek-sani, S. H., Deegan, D. B., et al. (2012). Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials, 33(31), 7756–7764.PubMedCrossRefGoogle Scholar
  126. 126.
    Orlando, G., Farney, A. C., Iskandar, S. S., et al. (2012). Production and implantation of renal extracellular matrix scaffolds from porcine kidneys as a platform for renal bioengineering investigations. Annals of Surgery, 256(2), 363–370.PubMedCrossRefGoogle Scholar
  127. 127.
    Orlando, G., Booth, C., Wang, Z., et al. (2013). Discarded human kidneys as a source of ECM scaffold for kidney regeneration technologies. Biomaterials, 34, 5915–5925.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Peloso, A., Petrosyan, A., Da Sacco, S., et al. (2015). Renal extracellular matrix scaffolds from discarded kidneys maintain Glomerular Morphometry and vascular resilience and retains critical growth factors. Transplantation, 99(9), 1807–1816.PubMedCrossRefGoogle Scholar
  129. 129.
    Petrosyan, A., Orlando, G., Peloso, A., Wang, Z., Farney, A. C., Rogers, G., Katari, R., Da Sacco, S., Sedrakyan, S., De Filippo, R. E., Stratta, R. J., Soker, S., & Perin, L. (2015). Understanding the bioactivity of stem cells seeded on extracellular matrix scaffolds produced from discarded human kidneys: A critical step towards a new generation bio-artificial kidney. CellR4., 3(1), e1401.Google Scholar
  130. 130.
    Song, J. J., Guyette, J. P., Gilpin, S. E., Gonzalez, G., Vacanti, J. P., & Ott, H. C. (2013). Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nature Medicine, 19(5), 646–651.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    D’Haese, J. G., Ceyhan, G. O., Demir, I. E., Layer, P., Uhl, W., Löhr, M., Rychlik, R., Pirilis, K., Zöllner, Y., Gradl, B., et al. (2014). Pancreatic enzyme replacement therapy in patients with exocrine pancreatic insufficiency due to chronic pancreatitis: A 1-year disease management study on symptom control and quality of life. Pancreas, 43, 834–841.PubMedCrossRefGoogle Scholar
  132. 132.
    Tao, Z., Shi, A., & Zhao, J. (2015). Epidemiological perspectives of diabetes. Cell Biochemistry and Biophysics, 1–5.Google Scholar
  133. 133.
    Orlando, G., Stratta, R. J., & Light, J. (2011). Pancreas transplantation for type 2 diabetes mellitus. Current Opinion in Organ Transplantation, 16(1), 110–115.PubMedCrossRefGoogle Scholar
  134. 134.
    Bottino, R., & Trucco, M. (2015). Clinical implementation of islet transplantation: A current assessment. Pediatric Diabetes, 16(6), 393–401.PubMedCrossRefGoogle Scholar
  135. 135.
    Bellin, M. D., Kandaswamy, R., Parkey, J., Zhang, H.-J., Liu, B., Ihm, S. H., Ansite, J. D., Witson, J., Bansal-Pakala, P., Balamurugan, A. N., et al. (2008). Prolonged insulin independence after islet allotransplants in recipients with type 1 diabetes. American Journal of Transplantation, 8, 2463–2470.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Ricordi, C., Lacy, P. E., Finke, E. H., Olack, B. J., & Scharp, D. W. (1988). Automated method for isolation of human pancreatic islets. Diabetes, 37, 413–420.PubMedCrossRefGoogle Scholar
  137. 137.
    Bellin, M. D., Barton, F. B., Heitman, A., Harmon, J. V., Kandaswamy, R., Balamurugan, A. N., Sutherland, D. E. R., Alejandro, R., & Hering, B. J. (2012). Potent induction immunotherapy promotes long-term insulin independence after islet transplantation in type 1 diabetes. American Journal of Transplantation, 12, 1576–1583.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Dor, Y., Brown, J., Martinez, O. I., & Melton, D. A. (2004). Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature, 429, 41–46.PubMedCrossRefGoogle Scholar
  139. 139.
    Xu, X., D’Hoker, J., Stangé, G., Bonné, S., De Leu, N., Xiao, X., Van De Casteele, M., Mellitzer, G., Ling, Z., Pipeleers, D., et al. (2008). β cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell, 132, 197–207.PubMedCrossRefGoogle Scholar
  140. 140.
    D’Amour, K. A., Agulnick, A. D., Eliazer, S., Kelly, O. G., Kroon, E., & Baetge, E. E. (2005). Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotechnology, 23, 1534–1541.PubMedCrossRefGoogle Scholar
  141. 141.
    D’Amour, K. A., Bang, A. G., Eliazer, S., Kelly, O. G., Agulnick, A. D., Smart, N. G., Moorman, M. A., Kroon, E., Carpenter, M. K., & Baetge, E. E. (2006). Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nature Biotechnology, 24, 1392–1401.PubMedCrossRefGoogle Scholar
  142. 142.
    Alipio, Z., Liao, W., Roemer, E. J., et al. (2010). Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proceedings of the National Academy of Sciences of the United States of America, 107(30), 13426–13431.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    De Carlo, E., Baiguera, S., Conconi, M. T., Vigolo, S., Grandi, C., Lora, S., Martini, C., Maffei, P., Tamagno, G., Vettor, R., et al. (2010). Pancreatic acellular matrix supports islet survival and function in a synthetic tubular device: In vitro and in vivo studies. International Journal of Molecular Medicine, 25, 195–202.PubMedGoogle Scholar
  144. 144.
    Mirmalek-Sani, S. H., Orlando, G., McQuilling, J., Pareta, R., Mack, D., Salvatori, M., Farney, A. C., Stratta, R. J., Atala, A., Opara, E. C., & Soker, S. (2013). Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials, 34(22), 5488–5495.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Peloso, A., Urbani, L., Katari, R., Maghsoudlou, P., Alvarez Fallas, M. E., Sordi, V., Citro, A., Niu, G., Zambon, J. P., Farney, A. C., Iskandar, S. S., Rogers, J., Stratta, R. J., Opara, E. C., Piemonti, L., Furdui, C. M., Soker, S., De Coppi, P., & Orlando, G. (2016). The human pancreas as a source of ECM scaffold for a new generation bio-artificial endocrine pancreas. Annals of Surgery, 264(1), 169–179.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Goh, S. K., Bertera, S., Olsen, P., Candiello, J., Halfter, W., Uechi, G., Balasubramani, M., Johnson, S., Sicari, B., Kollar, E., Badylak, S. T., & Banerjee, I. (2013). Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials, 34(28), 6760–6772.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    De Carlo, E., Baiguera, S., Conconi, M. T., et al. (2010). Pancreatic acellular matrix supports islet survival and function in a synthetic tubular device: In vitro and in vivo studies. International Journal of Molecular Medicine, 25(2), 195–202.PubMedGoogle Scholar
  148. 148.
    Murray, C. J., & Lopez, A. D. (2013). Measuring the global burden of disease. The New England Journal of Medicine, 369(5), 448–457.PubMedCrossRefGoogle Scholar
  149. 149.
    Dutkowski, P., Oberkofler, C. E., Béchir, M., et al. (2011). The model for end-stage liver disease allocation system for liver transplantation saves lives, but increases morbidity and cost: A prospective outcome analysis. Liver Transplantation, 17(6), 674–684.PubMedCrossRefGoogle Scholar
  150. 150.
    Fox, I. J., Chowdhury, J. R., Kaufman, S. S., et al. (1998). Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. The New England Journal of Medicine, 338(20), 1422–1426.PubMedCrossRefGoogle Scholar
  151. 151.
    Dhawan, A., Mitry, R. R., Hughes, R. D., et al. (2004). Hepatocyte transplantation for inherited factor VII deficiency. Transplantation, 78(12), 1812–1814.PubMedCrossRefGoogle Scholar
  152. 152.
    Struecker, B., Raschzok, N., & Sauer, I. M. (2014). Liver support strategies: Cutting-edge technologies. Nature Reviews. Gastroenterology & Hepatology, 11(3), 166–176.CrossRefGoogle Scholar
  153. 153.
    Minuk, G. Y. (2003). Hepatic regeneration: If it ain’t broke, don’t fix it. Canadian Journal of Gastroenterology, 17, 418–424.PubMedCrossRefGoogle Scholar
  154. 154.
    Kay, M. A., & Fausto, N. (1997). Liver regeneration: Prospects for therapy based on new technologies. Molecular Medicine Today, 3, 108–115.PubMedCrossRefGoogle Scholar
  155. 155.
    Meng, F., Francis, H., Glaser, S., et al. (2012). Role of stem cell factor and granulocyte colony-stimulating factor in remodeling during liver regeneration. Hepatology, 55(1), 209–221.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Cardinale, V., Wang, Y., Carpino, G., et al. (2011). Multipotent stem/progenitor cells in human biliary tree give rise to hepatocytes, cholangiocytes, and pancreatic islets. Hepatology, 54(6), 2159–2172.PubMedCrossRefGoogle Scholar
  157. 157.
    Petersen, B. E., Bowen, W. C., Patrene, K. D., et al. (1999). Bone marrow as a potential source of hepatic oval cells. Science, 284(5417), 1168–1170.PubMedCrossRefGoogle Scholar
  158. 158.
    Alison, M. R., Poulsom, R., Jeffery, R., et al. (2000). Hepatocytes from non-hepatic adult stem cells. Nature, 406(6793), 257.PubMedCrossRefGoogle Scholar
  159. 159.
    Schmelzer, E., Wauthier, E., & Reid, L. M. (2006). The phenotypes of pluripotent human hepatic progenitors. Stem Cells, 24, 1852–1858.PubMedCrossRefGoogle Scholar
  160. 160.
    Sugimoto, S., Harada, K., Shiotani, T., Ikeda, S., Katsura, N., Ikai, I., Mizuguchi, T., Hirata, K., Yamaoka, Y., & Mitaka, T. (2005). Hepatic organoid formation in collagen sponge of cells isolated from human liver tissues. Tissue Engineering, 11, 626–633.PubMedCrossRefGoogle Scholar
  161. 161.
    Zhang, L., Theise, N., Chua, M., & Reid, L. M. (2008). The stem cell niche of human livers: Symmetry between development and regeneration. Hepatology, 48, 1598–1607.PubMedCrossRefGoogle Scholar
  162. 162.
    Terai, S., Takami, T., Yamamoto, N., et al. (2014). Status and prospects of liver cirrhosis treatment by using bone marrow-derived cells and mesenchymal cells. Tissue Engineering. Part B, Reviews, 20(3), 206–210.PubMedCrossRefGoogle Scholar
  163. 163.
    Pan, X. N., Zheng, L. Q., & Lai, X. H. (2014). Bone marrow-derived mesenchymal stem cell therapy for decompensated liver cirrhosis: A meta-analysis. World Journal of Gastroenterology, 20(38), 14051–14057.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Liu, F., Pan, X., Chen, G., et al. (2006). Hematopoietic stem cells mobilized by granulocyte colony-stimulating factor partly contribute to liver graft regeneration after partial orthotopic liver transplantation. Liver Transplantation, 12(7), 1129–1137.PubMedCrossRefGoogle Scholar
  165. 165.
    Duan, X. Z., Liu, F. F., Tong, J. J., et al. (2013). Granulocyte-colony stimulating factor therapy improves survival in patients with hepatitis B virus-associated acute-on-chronic liver failure. World Journal of Gastroenterology, 19(7), 1104–1110.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Tsolaki, E., Athanasiou, E., Gounari, E., et al. (2014). Hematopoietic stem cells and liver regeneration: Differentially acting hematopoietic stem cell mobilization agents reverse induced chronic liver injury. Blood Cells, Molecules & Diseases, 53(3), 124–132.CrossRefGoogle Scholar
  167. 167.
    Piscaglia, A. C., Shupe, T. D., SH, O., Gasbarrini, A., & Petersen, B. E. (2007). Granulocyte-colony stimulating factor promotes liver repair and induces oval cell migration and proliferation in rats. Gastroenterology, 133(2), 619–631.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Soto-Gutierrez, A., Zhang, L., Medberry, C., Fukumitsu, K., Faulk, D., Jiang, H., Reing, J., Gramignoli, R., Komori, J., Ross, M., et al. (2011). A whole-organ regenerative medicine approach for liver replacement. Tissue Engineering Part C: Methods, 17, 677–686.CrossRefGoogle Scholar
  169. 169.
    Shupe, T., Williams, M., Willenberg, B., & Petersen, B. (2010). Method for the decellularization of intact rat liver. Organogenesis, 6, 134–136.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Uygun, B. E., Soto-Gutierrez, A., Yagi, H., Izamis, M. L., Guzzardi, M. A., Shulman, C., Milwid, J., Kobayashi, N., Tilles, A., Berthiaume, F., Hertl, M., Nahmias, Y., Yarmush, M. L., & Uygun, K. (2010). Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Medicine, 16, 814–820.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Yagi, H., Fukumitsu, K., Fukuda, K., et al. (2013). Human-scale whole-organ bioengineering for liver transplantation: A regenerative medicine approach. Cell Transplantation, 22(2), 231–242.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Baptista, P. M., Siddiqui, M. M., Lozier, G., Rodriguez, S. R., Atala, A., & Soker, S. (2011). The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology, 53(2), 604–617.PubMedCrossRefGoogle Scholar
  173. 173.
    Wang, Y., Cui, C. B., Yamauchi, M., Miguez, P., Roach, M., Malavarca, R., Costello, M. J., Cardinale, V., Wauthier, E., Barbier, C., Gerber, D. A., Alvaro, D., & Reid, L. M. (2011). Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology, 53, 293–305.PubMedCrossRefGoogle Scholar
  174. 174.
    Barakat, O., Abbasi, S., Rodriguez, G., et al. (2012). Use of decellularized porcine liver for engineering humanized liver organ. The Journal of Surgical Research, 173(1), e11–e25.PubMedCrossRefGoogle Scholar
  175. 175.
    Mazza, G., Rombouts, K., Rennie Hall, A., et al. (2015). Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Scientific Reports, 5, 13079.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Sun, Y., & Weber, K. T. (2000). Infarct scar: A dynamic tissue. Cardiovascular Research, 46(2), 250–256.PubMedCrossRefGoogle Scholar
  177. 177.
    Eschenhagen, T., Wakatsuki, T., & Elson, E. L. (1995, August 19–22). A new method to measure isometric force of contraction in embryonic cardiac myocytes. Report No. 95-17 on the second international conference on Cellular Engineering, La Jolla (Abstract).Google Scholar
  178. 178.
    Kehat, I., Kenyagin-karsenti, D., Snir, M., et al. (2001). Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. The Journal of Clinical Investigation, 108(3), 407–414.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Fazel, S., Tang, G. H., Angoulvant, D., et al. (2005). Current status of cellular therapy for ischemic heart disease. The Annals of Thoracic Surgery, 79(6), S2238–S2247.PubMedCrossRefGoogle Scholar
  180. 180.
    Murry, C. E., Field, L. J., & Menasché, P. (2005). Cell-based cardiac repair: Reflections at the 10-year point. Circulation, 112(20), 3174–3183.PubMedCrossRefGoogle Scholar
  181. 181.
    Qian, H., Yang, Y., Huang, J., et al. (2007). Intracoronary delivery of autologous bone marrow mononuclear cells radiolabeled by 18F-fluoro-deoxy-glucose: Tissue distribution and impact on post-infarct swine hearts. Journal of Cellular Biochemistry, 102(1), 64–74.PubMedCrossRefGoogle Scholar
  182. 182.
    Hirt, M. N., Hansen, A., & Eschenhagen, T. (2014). Cardiac tissue engineering: State of the art. Circulation Research, 114(2), 354–367.PubMedCrossRefGoogle Scholar
  183. 183.
    Zimmermann, W. H., Schneiderbanger, K., Schubert, P., et al. (2002). Tissue engineering of a differentiated cardiac muscle construct. Circulation Research, 90(2), 223–230.PubMedCrossRefGoogle Scholar
  184. 184.
    Leontyev, S., Schlegel, F., Spath, C., et al. (2013). Transplantation of engineered heart tissue as a biological cardiac assist device for treatment of dilated cardiomyopathy. European Journal of Heart Failure, 15(1), 23–35.PubMedCrossRefGoogle Scholar
  185. 185.
    Ott, H. C., Matthiesen, T. S., Goh, S. K., et al. (2008). Perfusion-decellularized matrix: Using nature's platform to engineer a bioartificial heart. Nature Medicine, 14(2), 213–221.PubMedCrossRefGoogle Scholar
  186. 186.
    Christman, K. L., Vardanian, A. J., Fang, Q., Sievers, R. E., Fok, H. H., & Lee, R. J. (2004). Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. Journal of the American College of Cardiology, 44(3), 654–660.PubMedCrossRefGoogle Scholar
  187. 187.
    Habib, M., Shapira-schweitzer, K., Caspi, O., et al. (2011). A combined cell therapy and in-situ tissue-engineering approach for myocardial repair. Biomaterials, 32(30), 7514–7523.PubMedCrossRefGoogle Scholar
  188. 188.
    Organ Procurement and Transplantation Network. Accessed April 2016.
  189. 189.
    Baiguera, S., Gonfiotti, A., Jaus, M., et al. (2011). Development of bioengineered human larynx. Biomaterials, 32(19), 4433–4442.PubMedCrossRefGoogle Scholar
  190. 190.
    Petersen, T. H., Calle, E. A., Zhao, L., et al. (2010). Tissue-engineered lungs for in vivo implantation. Science, 329(5991), 538–541.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Grillo, H. C. (2002). Tracheal replacement: A critical review. The Annals of Thoracic Surgery, 73(6), 1995–2004.PubMedCrossRefGoogle Scholar
  192. 192.
    Novosel, E. C., Kleinhans, C., & Kluger, P. J. (2011). Vascularization is the key challenge in tissue engineering. Advanced Drug Delivery Reviews, 63(4–5), 300–311.PubMedCrossRefGoogle Scholar
  193. 193.
    Berg, M., Ejnell, H., Kovács, A., et al. (2014). Replacement of a tracheal stenosis with a tissue-engineered human trachea using autologous stem cells: A case report. Tissue Engineering. Part A, 20(1–2), 389–397.PubMedCrossRefGoogle Scholar
  194. 194.
    Wong, A. P., Bear, C. E., Chin, S., et al. (2012). Directed differentiation of human pluripotent stem cells into mature airway epithelia expressing functional CFTR protein. Nature Biotechnology, 30(9), 876–882.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Seguin, A., Baccari, S., Holder-espinasse, M., et al. (2013). Tracheal regeneration: Evidence of bone marrow mesenchymal stem cell involvement. The Journal of Thoracic and Cardiovascular Surgery, 145(5), 1297–1304.e2.PubMedCrossRefGoogle Scholar
  196. 196.
    Mcintyre, B. A., Alev, C., Mechael, R., et al. (2014). Expansive generation of functional airway epithelium from human embryonic stem cells. Stem Cells Translational Medicine, 3(1), 7–17.PubMedCrossRefGoogle Scholar
  197. 197.
    Li, Y., Xu, W., Yan, J., et al. (2014). Differentiation of human amniotic fluid-derived mesenchymal stem cells into type II alveolar epithelial cells in vitro. International Journal of Molecular Medicine, 33(6), 1507–1513.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Ravi Katari
    • 1
  • Lauren Edgar
    • 1
  • Kevin Enck
    • 1
  • Andrea Peloso
    • 2
  • Riccardo Tamburrini
    • 1
  • Giuseppe Orlando
    • 3
    • 4
    Email author
  1. 1.Wake Forest School of MedicineWinston SalemUSA
  2. 2.General Surgery, Fondazione IRCCS Policlinico San Matteo and University of PaviaPaviaItaly
  3. 3.Department of Surgery, Section of TransplantationWake Forest School of MedicineWinston SalemUSA
  4. 4.Wake Forest Baptist HospitalWinston SalemUSA

Personalised recommendations