Machine Perfusion of Organs

  • Matthew F. Blum
  • Qiang Liu
  • Basem Soliman
  • Toshihiro Okamoto
  • Bahar Bassiri-Gharb
  • Teresa Diago Uso
  • Laura D. Buccini
  • Cristiano QuintiniEmail author


Transplant organ supplies are insufficient to meet the demands, resulting in prolonged patient wait times and waitlist mortality. Offering improved organ preservation, assessment, and resuscitation, machine perfusion of organs can enable the use of marginal organs, thereby expanding the donor pool. The technology is based on the common principle of continuous provision of oxygen and nutrients. Perfusion settings and components vary widely in terms of pump pulsatility, temperature control, oxygen provision, oncotic agents, and pharmacologic supplementation. While this technology was first pioneered in the 1960s, it has seen a recent resurgence. Hypothermic renal perfusion is the most clinically advanced area of perfusion and a source of continued innovation. Liver, heart, and lung perfusion techniques have been introduced into the clinical realm as safe alternatives, and evidence demonstrating clinical efficacy and superiority is accumulating. Machine perfusion of the pancreas and small intestine is being explored predominantly in preclinical models. Machine perfusion of limbs offers improved opportunities for limb transplantation and autologous replantation. Machine perfusion is a promising option to salvage function in marginal organ grafts and may enable prediction of organ function or dysfunction after transplantation.


  1. 1.
    Abouna, G. M. (2008). Organ shortage crisis: Problems and possible solutions. Transplantation Proceedings, 40, 34–38.CrossRefPubMedGoogle Scholar
  2. 2.
    Abu-Elmagd, K., Reyes, J., Todo, S., et al. (1998). Clinical intestinal transplantation: New perspectives and immunologic considerations. Journal of the American College of Surgeons, 186, 512–527.PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Arai, K., Hotokebuchi, T., Miyahara, H., et al. (1993). Successful long-term storage of rat limbs. The use of simple immersion in Euro-Collins solution. International Orthopaedics, 17, 389–396.CrossRefPubMedGoogle Scholar
  4. 4.
    Ardehali, A., Esmailian, F., Deng, M., et al. (2015). Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): A prospective, open-label, multicentre, randomised non-inferiority trial. Lancet, 385, 2577–2584.CrossRefPubMedGoogle Scholar
  5. 5.
    Arthur, P. G., Niu, X.-W., Huang, W.-H., et al. (2013). Desferrioxamine in warm reperfusion media decreases liver injury aggravated by cold storage. World Journal of Gastroenterology, 19, 673–681.PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Babkin, B. P., & Starling, E. H. (1926). A method for the study of the perfused pancreas. The Journal of Physiology, 61, 245–247.PubMedCentralCrossRefPubMedGoogle Scholar
  7. 7.
    Barlow, A. D., Hosgood, S. A., & Nicholson, M. L. (2013). Current state of pancreas preservation and implications for DCD pancreas transplantation. Transplant Journal, 95, 1419–1424.CrossRefGoogle Scholar
  8. 8.
    Baumgartner, D., Sutherland, D. E., & Najarian, J. S. (1980). Studies on segmental pancreas autotransplants in dogs: Technique and preservation. Transplantation Proceedings, 12, 163–171.PubMedGoogle Scholar
  9. 9.
    Beecher, H. K., Adams, R. D., Barger, C., et al. (1968). A definition of irreversible coma. Report of the Ad Hoc Committee of the Harvard Medical School to Examine the Definition of Brain Death. JAMA, 205, 337–340.CrossRefGoogle Scholar
  10. 10.
    Bell, R. M., Mocanu, M. M., & Yellon, D. M. (2011). Retrograde heart perfusion: The Langendorff technique of isolated heart perfusion. Journal of Molecular and Cellular Cardiology, 50, 940–950.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bellomo, R., Suzuki, S., Marino, B., et al. (2012). Normothermic extracorporeal perfusion of isolated porcine liver after warm ischaemia: A preliminary report. Critical Care and Resuscitation, 14, 173–176.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Belzer, F. O. (1991). Organ preservation: A personal perspective. In P. I. Terasaki (Ed.), History of transplantation: Thirty-five recollections (pp. 595–613). Los Angeles: UCLA Tissue Typing Laboratory.Google Scholar
  13. 13.
    Belzer, F. O., Ashby, B. S., & Dunphy, J. E. (1967). 24-hour and 72-hour preservation of canine kidneys. Lancet (London, England), 2, 536–538.CrossRefGoogle Scholar
  14. 14.
    Belzer, F. O., Ashby, B. S., Gulyassy, P. F., & Powell, M. (1968a). Successful seventeen-hour preservation and transplantation of human-cadaver kidney. The New England Journal of Medicine, 278, 608–610.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Belzer, F. O., Ashby, B. S., Huang, J. S., & Dunphy, J. E. (1968b). Etiology of rising perfusion pressure in isolated organ perfusion. Annals of Surgery, 168, 382–391.PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Belzer, F. O., D’Alessandro, A. M., Hoffmann, R. M., et al. (1992). The use of UW solution in clinical transplantation. A 4-year experience. Annals of Surgery, 215, 579–585.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Belzer, F. O., Glass, N. R., Sollinger, H. W., et al. (1982). A new perfusate for kidney preservation. Transplantation, 33, 322–323.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Benumof, J. L., & Wahrenbrock, E. A. (1977). Dependency of hypoxic pulmonary vasoconstriction on temperature. Journal of Applied Physiology, 42, 56–58.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bessems, M., Doorschodt, B. M., Kolkert, J. L. P., et al. (2007). Preservation of steatotic livers: A comparison between cold storage and machine perfusion preservation. Liver Transplantation, 13, 497–504.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bessems, M., Doorschodt, B. M., van Vliet, A. K., & van Gulik, T. M. (2005). Improved rat liver preservation by hypothermic continuous machine perfusion using polysol, a new, enriched preservation solution. Liver Transplantation, 11, 539–546.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bhangoo, R. S., Hall, I. E., Reese, P. P., & Parikh, C. R. (2012). Deceased-donor kidney perfusate and urine biomarkers for kidney allograft outcomes: A systematic review. Nephrology, Dialysis, Transplantation, 27, 3305–3314.PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Blaisdell, F. W. (2002). The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: A review. Cardiovascular Surgery, 10, 620–630.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Boehnert, M. U., Yeung, J. C., Bazerbachi, F., et al. (2013). Normothermic acellular ex vivo liver perfusion reduces liver and bile duct injury of pig livers retrieved after cardiac death. American Journal of Transplantation, 13, 1441–1449.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Brasile, L., Buelow, R., Stubenitsky, B. M., & Kootstra, G. (2003a). Induction of heme oxygenase-1 in kidneys during ex vivo warm perfusion. Transplantation, 76, 1145–1149.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Brasile, L., Glowacki, P., Castracane, J., & Stubenitsky, B. M. (2010). Pretransplant kidney-specific treatment to eliminate the need for systemic immunosuppression. Transplantation, 90, 1294–1298.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Brasile, L., Green, E., & Haisch, C. (1997). Oxygen consumption in warm-preserved renal allografts. Transplantation Proceedings, 29, 1322–1323.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Brasile, L., Stubenitsky, B., Haisch, C. E., et al. (2005). Potential of repairing ischemically damaged kidneys ex vivo. Transplantation Proceedings, 37, 375–376.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Brasile, L., Stubenitsky, B. M., Booster, M. H., et al. (2001). Hypothermia--a limiting factor in using warm ischemically damaged kidneys. American Journal of Transplantation, 1, 316–320.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Brasile, L., Stubenitsky, B. M., Booster, M. H., et al. (2002a). Transfection and transgene expression in a human kidney during ex vivo warm perfusion. Transplantation Proceedings, 34, 2624.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Brasile, L., Stubenitsky, B. M., Booster, M. H., et al. (2002b). Overcoming severe renal ischemia: The role of ex vivo warm perfusion. Transplantation, 73, 897–901.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Brasile, L., Stubenitsky, B. M., Booster, M. H., et al. (2003b). NOS: The underlying mechanism preserving vascular integrity and during ex vivo warm kidney perfusion. American Journal of Transplantation, 3, 674–679.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Braun, F., Schütz, E., Laabs, S., et al. (1998). Development of a porcine small bowel ex vivo perfusion model. Transplantation Proceedings, 30, 2613–2615.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bravo, D., Rigley, T. H., Gibran, N., et al. (2000). Effect of storage and preservation methods on viability in transplantable human skin allografts. Burns, 26, 367–378.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Brockmann, J., Reddy, S., Coussios, C., et al. (2009). Normothermic perfusion: A new paradigm for organ preservation. Annals of Surgery, 250, 1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bruinsma, B. G., Yeh, H., Ozer, S., et al. (2014). Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation. American Journal of Transplantation, 14, 1400–1409.PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Brynger, H., & Claes, G. (1975). Behaviour of the duct-ligated canine pancreas during hypothermic albumin perfusion. Eur Surg Res Eur Chir Forschung Rech Chir Eur, 7, 287–296.Google Scholar
  37. 37.
    Butler, A. J., Rees, M. A., Wight, D. G. D., et al. (2002). Successful extracorporeal porcine liver perfusion for 72 hr. Transplantation, 73, 1212–1218.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Candinas, D., Largiadèr, F., Binswanger, U., et al. (1996). A novel dextran 40-based preservation solution. Transplant International, 9, 32–37.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cannon, R. M., Brock, G. N., Garrison, R. N., et al. (2013). To pump or not to pump: A comparison of machine perfusion vs cold storage for deceased donor kidney transplantation. Journal of the American College of Surgeons, 216, 625–633.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Changani, K. K., Fuller, B. J., Bryant, D. J., et al. (1997). Non-invasive assessment of ATP regeneration potential of the preserved donor liver. A 31P MRS study in pig liver. Journal of Hepatology, 26, 336–342.CrossRefPubMedGoogle Scholar
  41. 41.
    Cho, Y. W., Terasaki, P. I., Cecka, J. M., & Gjertson, D. W. (1998). Transplantation of kidneys from donors whose hearts have stopped beating. The New England Journal of Medicine, 338, 221–225.CrossRefPubMedGoogle Scholar
  42. 42.
    Claes, G., Aurell, M., Blohmé, I., & Pettersson, S. (1972). Experimental and clinical results of continuous hypothermic albumin perfusion. Proceedings of the European Dialysis and Transplant Association, 9, 484–490.PubMedGoogle Scholar
  43. 43.
    Collins, G. M., Bravo-Shugarman, M., & Terasaki, P. I. (1969). Kidney preservation for transportation. Initial perfusion and 30 hours’ ice storage. Lancet, 2, 1219–1222.CrossRefPubMedGoogle Scholar
  44. 44.
    Colvin-Adams, M., Smith, J. M., Heubner, B. M., et al. (2015). OPTN/SRTR 2013 annual data report: Heart. American Journal of Transplantation, 15(Suppl 2), 1–28.CrossRefPubMedGoogle Scholar
  45. 45.
    Constantinescu, M. A., Knall, E., Xu, X., et al. (2011). Preservation of amputated extremities by extracorporeal blood perfusion; a feasibility study in a porcine model. The Journal of Surgical Research, 171, 291–299.CrossRefPubMedGoogle Scholar
  46. 46.
    Cypel, M., Liu, M., Rubacha, M., et al. (2009a). Functional repair of human donor lungs by IL-10 gene therapy. Science Translational Medicine, 1, 4ra9.CrossRefPubMedGoogle Scholar
  47. 47.
    Cypel, M., Rubacha, M., Yeung, J., et al. (2009b). Normothermic ex vivo perfusion prevents lung injury compared to extended cold preservation for transplantation. American Journal of Transplantation, 9, 2262–2269.CrossRefPubMedGoogle Scholar
  48. 48.
    Cypel, M., Yeung, J. C., Hirayama, S., et al. (2008). Technique for prolonged normothermic ex vivo lung perfusion. The Journal of Heart and Lung Transplantation, 27, 1319–1325.CrossRefPubMedGoogle Scholar
  49. 49.
    Cypel, M., Yeung, J. C., Liu, M., et al. (2011). Normothermic ex vivo lung perfusion in clinical lung transplantation. The New England Journal of Medicine, 364, 1431–1440.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cypel, M., Yeung, J. C., Machuca, T., et al. (2012). Experience with the first 50 ex vivo lung perfusions in clinical transplantation. The Journal of Thoracic and Cardiovascular Surgery, 144, 1200–1206.CrossRefPubMedGoogle Scholar
  51. 51.
    de Groot, H., & Rauen, U. (2007). Ischemia-reperfusion injury: Processes in pathogenetic networks: A review. Transplantation Proceedings, 39, 481–484.CrossRefPubMedGoogle Scholar
  52. 52.
    de Rougemont, O., Breitenstein, S., Leskosek, B., et al. (2009). One hour hypothermic oxygenated perfusion (HOPE) protects nonviable liver allografts donated after cardiac death. Annals of Surgery, 250, 674–683.CrossRefPubMedGoogle Scholar
  53. 53.
    de Vries, E. E., Hoogland, E. R. P., Winkens, B., et al. (2011). Renovascular resistance of machine-perfused DCD kidneys is associated with primary nonfunction. American Journal of Transplantation, 11, 2685–2691.CrossRefPubMedGoogle Scholar
  54. 54.
    DeCampos, K. N., Keshavjee, S., Slutsky, A. S., & Liu, M. (1999). Alveolar recruitment prevents rapid-reperfusion-induced injury of lung transplants. The Journal of Heart and Lung Transplantation, 18, 1096–1102.CrossRefPubMedGoogle Scholar
  55. 55.
    Delorme, T. L., Shaw, R. S., & Austen, W. G. (1964). A method of studying “normal” function in the amputated human limb using perfusion. The Journal of Bone and Joint Surgery, 46, 161–164.CrossRefPubMedGoogle Scholar
  56. 56.
    Demacker, P. N. M., Beijers, A. M., van Daal, H., et al. (2009). Plasma citrulline measurement using UPLC tandem mass-spectrometry to determine small intestinal enterocyte pathology. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 877, 387–392.CrossRefPubMedGoogle Scholar
  57. 57.
    Desai, T. R., Sisley, A. C., Brown, S., & Gewertz, B. L. (1996). Defining the critical limit of oxygen extraction in the human small intestine. Journal of Vascular Surgery, 23, 832–838.CrossRefPubMedGoogle Scholar
  58. 58.
    Dhital, K. K., Iyer, A., Connellan, M., et al. (2015). Adult heart transplantation with distant procurement and ex-vivo preservation of donor hearts after circulatory death: A case series. Lancet, 385, 2585–2591.CrossRefPubMedGoogle Scholar
  59. 59.
    Domingo-Pech, J., Garriga, J. M., Toran, N., et al. (1991). Preservation of the amputated canine hind limb by extracorporeal perfusion. International Orthopaedics, 15, 289–291.CrossRefPubMedGoogle Scholar
  60. 60.
    Durand, F., Renz, J. F., Alkofer, B., et al. (2008). Report of the Paris consensus meeting on expanded criteria donors in liver transplantation. Liver Transplantation, 14, 1694–1707.CrossRefPubMedGoogle Scholar
  61. 61.
    Dutkowski, P., Furrer, K., Tian, Y., et al. (2006). Novel short-term hypothermic oxygenated perfusion (HOPE) system prevents injury in rat liver graft from non-heart beating donor. Annals of Surgery, 244, 968–976.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    Dutkowski, P., Polak, W. G., Muiesan, P., et al. (2015). First comparison of hypothermic oxygenated perfusion versus static cold storage of human donation after cardiac death liver transplants: An international-matched case analysis. Annals of Surgery, 262, 764–771.CrossRefPubMedGoogle Scholar
  63. 63.
    Dutkowski, P., Schlegel, A., de Oliveira, M., et al. (2014). HOPE for human liver grafts obtained from donors after cardiac death. Journal of Hepatology, 60, 765–772.CrossRefPubMedGoogle Scholar
  64. 64.
    Eckhauser, F., Knol, J. A., Porter-Fink, V., et al. (1981). Ex vivo normothermic hemoperfusion of the canine pancreas: Applications and limitations of a modified experimental preparation. The Journal of Surgical Research, 31, 22–37.CrossRefPubMedGoogle Scholar
  65. 65.
    Eloy, M. R., Kachelhoffer, J., Pousse, A., et al. (1974). Ex vivo vascular perfusion of the isolated canine pancreas. Experimental procedure, haemodynamic data and experimental applications. Eur Surg Res Eur Chir Forschung Rech Chir Eur, 6, 341–353.Google Scholar
  66. 66.
    Erasmus, M. E., Fernhout, M. H., Elstrodt, J. M., & Rakhorst, G. (2006). Normothermic ex vivo lung perfusion of non-heart-beating donor lungs in pigs: From pretransplant function analysis towards a 6-h machine preservation. Transplant International, 19, 589–593.CrossRefPubMedGoogle Scholar
  67. 67.
    Feng, L., Zhao, N., Yao, X., et al. (2007). Histidine-tryptophan-ketoglutarate solution vs. University of Wisconsin solution for liver transplantation: A systematic review. Liver Transplantation, 13, 1125–1136.CrossRefPubMedGoogle Scholar
  68. 68.
    Ferrigno, A., Rizzo, V., Boncompagni, E., et al. (2011). Machine perfusion at 20°C reduces preservation damage to livers from non-heart beating donors. Cryobiology, 62, 152–158.CrossRefPubMedGoogle Scholar
  69. 69.
    Fitton, T. P., Barreiro, C. J., Bonde, P. N., et al. (2005). Attenuation of DNA damage in canine hearts preserved by continuous hypothermic perfusion. The Annals of Thoracic Surgery, 80, 1812–1820.CrossRefPubMedGoogle Scholar
  70. 70.
    Florack, G., Sutherland, D. E., Heil, J., et al. (1983). Preservation of canine segmental pancreatic autografts: Cold storage versus pulsatile machine perfusion. The Journal of Surgical Research, 34, 493–504.CrossRefPubMedGoogle Scholar
  71. 71.
    Fontes, P., Lopez, R., van der Plaats, A., et al. (2015). Liver preservation with machine perfusion and a newly developed cell-free oxygen carrier solution under subnormothermic conditions. American Journal of Transplantation, 15, 381–394.PubMedCentralCrossRefPubMedGoogle Scholar
  72. 72.
    Fujinaga, T., Nakamura, T., Fukuse, T., et al. (2006). Isoflurane inhalation after circulatory arrest protects against warm ischemia reperfusion injury of the lungs. Transplantation, 82, 1168–1174.CrossRefPubMedGoogle Scholar
  73. 73.
    Fukuse, T., Albes, J. M., Takahashi, Y., et al. (1995). Influence of red blood cells on lung function in an ex vivo rat heart-lung model. The Journal of Surgical Research, 59, 399–404.CrossRefPubMedGoogle Scholar
  74. 74.
    Fuller, B. J., & Lee, C. Y. (2007). Hypothermic perfusion preservation: The future of organ preservation revisited? Cryobiology, 54, 129–145.CrossRefPubMedGoogle Scholar
  75. 75.
    Gage, F., Leeser, D. B., Porterfield, N. K., et al. (2009). Room temperature pulsatile perfusion of renal allografts with Lifor compared with hypothermic machine pump solution. Transplantation Proceedings, 41, 3571–3574.CrossRefPubMedGoogle Scholar
  76. 76.
    Gallinat, A., Efferz, P., Paul, A., & Minor, T. (2014). One or 4 h of “in-house” reconditioning by machine perfusion after cold storage improve reperfusion parameters in porcine kidneys. Transplant International, 27, 1214–1219.CrossRefPubMedGoogle Scholar
  77. 77.
    Gallinat, A., Moers, C., Smits, J. M., et al. (2013). Machine perfusion versus static cold storage in expanded criteria donor kidney transplantation: 3-year follow-up data. Transplant International, 26, E52–E53.CrossRefPubMedGoogle Scholar
  78. 78.
    Gallinat, A., Moers, C., Treckmann, J., et al. (2012a). Machine perfusion versus cold storage for the preservation of kidneys from donors ≥ 65 years allocated in the Eurotransplant Senior Programme. Nephrology, Dialysis, Transplantation, 27, 4458–4463.CrossRefPubMedGoogle Scholar
  79. 79.
    Gallinat, A., Paul, A., Efferz, P., et al. (2012b). Role of oxygenation in hypothermic machine perfusion of kidneys from heart beating donors. Transplantation, 94, 809–813.CrossRefPubMedGoogle Scholar
  80. 80.
    Gallinat, A., Paul, A., Efferz, P., et al. (2012c). Hypothermic reconditioning of porcine kidney grafts by short-term preimplantation machine perfusion. Transplantation, 93, 787–793.CrossRefPubMedGoogle Scholar
  81. 81.
    Ginzel, K. H. (1960). A method for measurement of peristaltic activity and for perfusion of the vascular system and lumen of an isolated loop of small intestine in the guinea pig. Naunyn-Schmiedebergs Archiv für Experimentelle Pathologie und Pharmakologie, 238, 231–232.PubMedGoogle Scholar
  82. 82.
    Gordon, L., Levinsohn, D. G., Borowsky, C. D., et al. (1992). Improved preservation of skeletal muscle in amputated limbs using pulsatile hypothermic perfusion with University of Wisconsin solution. A preliminary study. The Journal of Bone and Joint Surgery American, 74, 1358–1366.CrossRefGoogle Scholar
  83. 83.
    Greaney, P. J., Cordisco, M., Rodriguez, D., et al. (2010). Use of an extracorporeal membrane oxygenation circuit as a bridge to salvage a major upper-extremity replant in a critically ill patient. Journal of Reconstructive Microsurgery, 26, 517–522.CrossRefPubMedGoogle Scholar
  84. 84.
    Gringeri, E., Bonsignore, P., Bassi, D., et al. (2012). Subnormothermic machine perfusion for non-heart-beating donor liver grafts preservation in a Swine model: A new strategy to increase the donor pool? Transplantation Proceedings, 44, 2026–2028.CrossRefPubMedGoogle Scholar
  85. 85.
    Groen, H., Moers, C., Smits, J. M., et al. (2012). Cost-effectiveness of hypothermic machine preservation versus static cold storage in renal transplantation. American Journal of Transplantation, 12, 1824–1830.CrossRefPubMedGoogle Scholar
  86. 86.
    Gruessner, A. C. (2011). 2011 update on pancreas transplantation: Comprehensive trend analysis of 25,000 cases followed up over the course of twenty-four years at the international pancreas transplant registry (IPTR). The Review of Diabetic Studies, 8, 6–16.PubMedCentralCrossRefPubMedGoogle Scholar
  87. 87.
    Grundmann, R., Raab, M., Meusel, E., et al. (1975). Analysis of the optimal perfusion pressure and flow rate of the renal vascular resistance and oxygen consumption in the hypothermic perfused kidney. Surgery, 77, 451–461.PubMedGoogle Scholar
  88. 88.
    Guarrera, J. V., Henry, S. D., Samstein, B., et al. (2015). Hypothermic machine preservation facilitates successful transplantation of “orphan” extended criteria donor livers. American Journal of Transplantation, 15, 161–169.CrossRefPubMedGoogle Scholar
  89. 89.
    Guarrera, J. V., Henry, S. D., Samstein, B., et al. (2010). Hypothermic machine preservation in human liver transplantation: The first clinical series. American Journal of Transplantation, 10, 372–381.CrossRefPubMedGoogle Scholar
  90. 90.
    Guibert, E. E., Petrenko, A. Y., Balaban, C. L., et al. (2011). Organ preservation: Current concepts and new strategies for the next decade. Transfusion Medicine and Hemotherapy, 38, 125–142.PubMedCentralCrossRefPubMedGoogle Scholar
  91. 91.
    Hamilton, D. (2013). Kidney transplantation: A history. In P. Morris & S. J. Knechtle (Eds.), Kidney transplantation: Principles and practice (7th ed., pp. 1–9). Oxford: Saunders.Google Scholar
  92. 92.
    Hassanein, W. H., Zellos, L., Tyrrell, T. A., et al. (1998). Continuous perfusion of donor hearts in the beating state extends preservation time and improves recovery of function. The Journal of Thoracic and Cardiovascular Surgery, 116, 821–830.CrossRefPubMedGoogle Scholar
  93. 93.
    Henry, S. D., Nachber, E., Tulipan, J., et al. (2012). Hypothermic machine preservation reduces molecular markers of ischemia/reperfusion injury in human liver transplantation. American Journal of Transplantation, 12, 2477–2486.CrossRefPubMedGoogle Scholar
  94. 94.
    Hicks, T. E., Boswick, J. A., & Solomons, C. C. (1980). The effects of perfusion on an amputated extremity. The Journal of Trauma, 20, 632–648.CrossRefPubMedGoogle Scholar
  95. 95.
    Hoffmann, R. M., Southard, J. H., Lutz, M., et al. (1983). Synthetic perfusate for kidney preservation. Its use in 72-hour preservation of dog kidneys. Archives of Surgery, 118, 919–921.CrossRefPubMedGoogle Scholar
  96. 96.
    Hohenleitner, F. J., & Senior, J. R. (1969). Metabolism of canine small intestine vascularly perfused in vitro. Journal of Applied Physiology, 26, 119–128.CrossRefPubMedGoogle Scholar
  97. 97.
    Hoogland, E. R. P., de Vries, E. E., Christiaans, M. H. L., et al. (2013). The value of machine perfusion biomarker concentration in DCD kidney transplantations. Transplantation, 95, 603–610.CrossRefPubMedGoogle Scholar
  98. 98.
    Hosgood, S. A., Bagul, A., Kaushik, M., et al. (2008a). Application of nitric oxide and carbon monoxide in a model of renal preservation. The British Journal of Surgery, 95, 1060–1067.CrossRefPubMedGoogle Scholar
  99. 99.
    Hosgood, S. A., Bagul, A., Yang, B., & Nicholson, M. L. (2008b). The relative effects of warm and cold ischemic injury in an experimental model of nonheartbeating donor kidneys. Transplantation, 85, 88–92.CrossRefPubMedGoogle Scholar
  100. 100.
    Hoyer, D. P., Gallinat, A., Swoboda, S., et al. (2014a). Subnormothermic machine perfusion for preservation of porcine kidneys in a donation after circulatory death model. Transplant International, 27, 1097–1106.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Hoyer, D. P., Gallinat, A., Swoboda, S., et al. (2014b). Influence of oxygen concentration during hypothermic machine perfusion on porcine kidneys from donation after circulatory death. Transplantation, 98, 944–950.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Huang, H., He, Z., Roberts, L. J., & Salahudeen, A. K. (2003). Deferoxamine reduces cold-ischemic renal injury in a syngeneic kidney transplant model. American Journal of Transplantation, 3, 1531–1537.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Humphries, A. L., Russell, R., Gregory, J., et al. (1964). Hypothermic perfusion of the canine kidney for 48 hours followed by Reimplantation. The American Surgeon, 30, 748–752.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Humphries, A. L., Russell, R., Stoddard, L. D., & Moretz, W. H. (1968). Three-day kidney preservation: Perfusion of kidneys with hypothermic, diluted blood of plasma. Surgery, 63, 646–652.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Ingemansson, R., Eyjolfsson, A., Mared, L., et al. (2009). Clinical transplantation of initially rejected donor lungs after reconditioning ex vivo. The Annals of Thoracic Surgery, 87, 255–260.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Inoue, H., Inoue, C., & Hildebrandt, J. (1982). Temperature effects on lung mechanics in air- and liquid-filled rabbit lungs. Journal of Applied Physiology, 53, 567–575.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Jamieson, R. W., Zilvetti, M., Roy, D., et al. (2011). Hepatic steatosis and normothermic perfusion-preliminary experiments in a porcine model. Transplantation, 92, 289–295.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Jiao, B., Liu, S., Liu, H., et al. (2013). Hypothermic machine perfusion reduces delayed graft function and improves one-year graft survival of kidneys from expanded criteria donors: A meta-analysis. PloS One, 8, e81826.PubMedCentralCrossRefPubMedGoogle Scholar
  109. 109.
    Jochmans, I., Moers, C., Ploeg, R., & Pirenne, J. (2011a). To perfuse or not to perfuse kidneys donated after cardiac death. American Journal of Transplantation, 11, 409–410.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Jochmans, I., Moers, C., Smits, J. M., et al. (2011b). The prognostic value of renal resistance during hypothermic machine perfusion of deceased donor kidneys. American Journal of Transplantation, 11, 2214–2220.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Jochmans, I., Moers, C., Smits, J. M., et al. (2010). Machine perfusion versus cold storage for the preservation of kidneys donated after cardiac death: A multicenter, randomized, controlled trial. Annals of Surgery, 252, 756–764.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Jochmans, I., O’Callaghan, J. M., Pirenne, J., & Ploeg, R. J. (2015). Hypothermic machine perfusion of kidneys retrieved from standard and high-risk donors. Transplant international, 28(6), 665–676.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Kachelhoffer, J., Dauchel, J., Pousse, A., et al. (1976). A simple device to obtain a pulsatile flow. Application to the vascular perfusion of dogs isolated intestinal segments. Eur Surg Res Eur Chir Forschung Rech Chir Eur, 8, 461–470.Google Scholar
  114. 114.
    Kandaswamy, R., Skeans, M. A., Gustafson, S. K., et al. (2016). Pancreas. American Journal of Transplantation, 16(Suppl 2), 47–68.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Karangwa, S. A., Dutkowski, P., Fontes, P., et al. (2016). Machine perfusion of donor livers for transplantation: A proposal for standardized nomenclature and reporting guidelines. American Journal of Transplantation, 16(10), 2932–2942.PubMedCentralCrossRefPubMedGoogle Scholar
  116. 116.
    Karcz, M., Cook, H. T., Sibbons, P., et al. (2010). An ex-vivo model for hypothermic pulsatile perfusion of porcine pancreata: Hemodynamic and morphologic characteristics. Experimental and Clinical Transplantation, 8, 55–60.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Kaths, J. M., Spetzler, V. N., Goldaracena, N., et al. (2015). Normothermic Ex Vivo Kidney Perfusion for the Preservation of Kidney Grafts prior to Transplantation. Journal of Visualized Experiments, 15(101), e52909.Google Scholar
  118. 118.
    Khush, K. K., Zaroff, J. G., Nguyen, J., et al. (2015). National decline in donor heart utilization with regional variability: 1995-2010. American Journal of Transplantation, 15, 642–649.PubMedCentralCrossRefPubMedGoogle Scholar
  119. 119.
    Kim, W. R., Lake, J. R., Smith, J. M., et al. (2016). Liver. American Journal of Transplantation, 16(Suppl 2), 69–98.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Klein, A. S., Messersmith, E. E., Ratner, L. E., et al. (2010). Organ donation and utilization in the United States, 1999-2008. American Journal of Transplantation, 10, 973–986.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Knaak, J. M., Spetzler, V. N., Goldaracena, N., et al. (2014). Subnormothermic ex vivo liver perfusion reduces endothelial cell and bile duct injury after donation after cardiac death pig liver transplantation. Liver Transplantation, 20, 1296–1305.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Kosieradzki, M., & Rowiński, W. (2008). Ischemia/reperfusion injury in kidney transplantation: Mechanisms and prevention. Transplantation Proceedings, 40, 3279–3288.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Kwiatkowski, A., Wszoła, M., Kosieradzki, M., et al. (2009). The early and long term function and survival of kidney allografts stored before transplantation by hypothermic pulsatile perfusion. A prospective randomized study. Annals of Transplantation, 14, 14–17.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Lam, V. W. T., Laurence, J. M., Richardson, A. J., et al. (2013). Hypothermic machine perfusion in deceased donor kidney transplantation: A systematic review. The Journal of Surgical Research, 180, 176–182.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Lauschke, H., Olschewski, P., Tolba, R., et al. (2003). Oxygenated machine perfusion mitigates surface antigen expression and improves preservation of predamaged donor livers. Cryobiology, 46, 53–60.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Lee, C. Y., & Mangino, M. J. (2009). Preservation methods for kidney and liver. Organogenesis, 5, 105–112.PubMedCentralCrossRefPubMedGoogle Scholar
  127. 127.
    Lee, J. W., Fang, X., Gupta, N., et al. (2009). Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proceedings of the National Academy of Sciences of the United States of America, 106, 16357–16362.PubMedCentralCrossRefPubMedGoogle Scholar
  128. 128.
    Leeser, D. B., Bingaman, A. W., Poliakova, L., et al. (2004). Pulsatile pump perfusion of pancreata before human islet cell isolation. Transplantation Proceedings, 36, 1050–1051.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Lindell, S. L., Compagnon, P., Mangino, M. J., & Southard, J. H. (2005). UW solution for hypothermic machine perfusion of warm ischemic kidneys. Transplantation, 79, 1358–1361.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Lindell, S. L., Muir, H., Brassil, J., & Mangino, M. J. (2013). Hypothermic machine perfusion preservation of the DCD kidney: Machine effects. Journal of Transplantation, 2013, 802618.PubMedCentralCrossRefPubMedGoogle Scholar
  131. 131.
    Linder, A., Friedel, G., Fritz, P., et al. (1996). The ex-vivo isolated, perfused human lung model: Description and potential applications. The Thoracic and Cardiovascular Surgeon, 44, 140–146.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Liu, Q., Berendsen, T., Izamis, M.-L., et al. (2013a). Perfusion defatting at subnormothermic temperatures in steatotic rat livers. Transplantation Proceedings, 45, 3209–3213.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Liu, Q., Izamis, M.-L., Xu, H., et al. (2013b). Strategies to rescue steatotic livers before transplantation in clinical and experimental studies. World Journal of Gastroenterology, 19, 4638–4650.PubMedCentralCrossRefPubMedGoogle Scholar
  134. 134.
    Liu, Q., Nassar, A., Farias, K., et al. (2015). Comparing normothermic machine perfusion preservation with different perfusates on porcine livers from donors after circulatory death. American Journal of Transplantation, 16, 794-807.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Liu, Q., Nassar, A., Farias, K., et al. (2014a). Sanguineous normothermic machine perfusion improves hemodynamics and biliary epithelial regeneration in donation after cardiac death porcine livers. Liver Transplantation, 20, 987–999.PubMedCentralCrossRefPubMedGoogle Scholar
  136. 136.
    Liu, Q., Vekemans, K., Iania, L., et al. (2014b). Assessing warm ischemic injury of pig livers at hypothermic machine perfusion. The Journal of Surgical Research, 186, 379–389.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Liu, Q., Vekemans, K., van Pelt, J., et al. (2009). Discriminate liver warm ischemic injury during hypothermic machine perfusion by proton magnetic resonance spectroscopy: A study in a porcine model. Transplantation Proceedings, 41, 3383–3386.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Lockett, C. J., Fuller, B. J., Busza, A. L., & Proctor, E. (1995). Hypothermic perfusion preservation of liver: The role of phosphate in stimulating ATP synthesis studied by 31P NMR. Transplant International, 8, 440–445.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Malt, R., & McKhann, C. (1964). Replantation of severed arms. JAMA, 189, 716–722.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Mangino, M. (2011). Hypothermic machine perfusion of kidneys. In K. Uygun & C. Y. Lee (Eds.), Methods in bioengineering: Organ preservation and reengineering (pp. 35–57). Boston: Artech House.Google Scholar
  141. 141.
    Mangus, R. S., Fridell, J. A., Vianna, R. M., et al. (2008). Comparison of histidine-tryptophan-ketoglutarate solution and University of Wisconsin solution in extended criteria liver donors. Liver Transplantation, 14, 365–373.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Matas, A. J., Smith, J. M., Skeans, M. A., et al. (2015). OPTN/SRTR 2013 Annual data report: Kidney. American Journal of Transplantation, 15(Suppl 2), 1–34.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Mehl, R., Paul, H., Shorey, W., et al. (1964). Patency of the microcirculation in the traumatically amputated limb--a comparison of common perfusates. The Journal of Trauma, 4, 495–505.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Mercer, D. F., Vargas, L., Sun, Y., et al. (2011). Stool calprotectin monitoring after small intestine transplantation. Transplantation, 91, 1166–1171.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Meyer, W., Castelfranchi, P. L., Schulz, L. S., et al. (1973). Physiologic studies during perfusion of the isolated canine pancreas. The endocrine and exocrine behavior. Eur Surg Res Eur Chir Forschung Rech Chir Eur, 5, 105–115.Google Scholar
  146. 146.
    Minor, T., Manekeller, S., Sioutis, M., & Dombrowski, F. (2006). Endoplasmic and vascular surface activation during organ preservation: Refining upon the benefits of machine perfusion. American Journal of Transplantation, 6, 1355–1366.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Miyazaki, K., Sunada, K., Iseki, K., & Arita, T. (1986). Simultaneous vascular and luminal perfusion of rat small intestine. Chemical & Pharmaceutical Bulletin (Tokyo), 34, 3830–3835.CrossRefGoogle Scholar
  148. 148.
    Modry, D. L., Jirsch, D. W., Boehme, G., et al. (1973). Hypothermic perfusion preservation of the isolated dog lung. The Annals of Thoracic Surgery, 16, 583–597.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Moers, C., Pirenne, J., Paul, A., & Ploeg, R. J. (2012). Machine perfusion or cold storage in deceased-donor kidney transplantation. The New England Journal of Medicine, 366, 770–771.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Moers, M., Smits, J.M., Maathuis, M.J., et al. (2009). Machine Perfusion or Cold Storage in Deceased-Donor Kidney Transplantation. The  New England Journal of Medicine, 360, 7–19.Google Scholar
  151. 151.
    Moers, C., Varnav, O. C., van Heurn, E., et al. (2010). The value of machine perfusion perfusate biomarkers for predicting kidney transplant outcome. Transplantation, 90, 966–973.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Monbaliu, D., Liu, Q., Vekemans, K., & Pirenne, J. (2009). History of organ perfusion in organ transplantation. In D. Talbot & A. M. D’Alessandro (Eds.), Organ donation and transplantation after cardiac death (pp. 31–49). New York: Oxford University Press.CrossRefGoogle Scholar
  153. 153.
    Monbaliu, D., Pirenne, J., & Talbot, D. (2012). Liver transplantation using donation after cardiac death donors. Journal of Hepatology, 56, 474–485.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Moustafellos, P., Hadjianastassiou, V., Roy, D., et al. (2007). The influence of pulsatile preservation in kidney transplantation from non-heart-beating donors. Transplantation Proceedings, 39, 1323–1325.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Mozes, M. F., Skolek, R. B., & Korf, B. C. (2005). Use of perfusion parameters in predicting outcomes of machine-preserved kidneys. Transplantation Proceedings, 37, 350–351.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Müller, S., Constantinescu, M. A., Kiermeir, D. M., et al. (2013). Ischemia/reperfusion injury of porcine limbs after extracorporeal perfusion. The Journal of Surgical Research, 181, 170–182.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Muñoz-Abraham, A. S., Patrón-Lozano, R., Narayan, R. R., et al. (2015). Extracorporeal hypothermic perfusion device for intestinal graft preservation to decrease ischemic injury during transportation. Journal of Gastrointestinal Surgery, 20, 313–21.CrossRefGoogle Scholar
  158. 158.
    Muthusamy, A. S. R., Mumford, L., Hudson, A., et al. (2012). Pancreas transplantation from donors after circulatory death from the United Kingdom. American Journal of Transplantation, 12, 2150–2156.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Nagrath, D., Xu, H., Tanimura, Y., et al. (2009). Metabolic preconditioning of donor organs: Defatting fatty livers by normothermic perfusion ex vivo. Metabolic Engineering, 11, 274–283.PubMedCentralCrossRefPubMedGoogle Scholar
  160. 160.
    Nakajima, D., Chen, F., Yamada, T., et al. (2011). Hypothermic machine perfusion ameliorates ischemia-reperfusion injury in rat lungs from non-heart-beating donors. Transplantation, 92, 858–863.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Nassar, A., Liu, Q., Farias, K., et al. (2014). Role of vasodilation during normothermic machine perfusion of DCD porcine livers. The International Journal of Artificial Organs, 37, 165–172.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Nassar, A., Liu, Q., Farias, K., et al. (2016). Impact of temperature on porcine liver machine perfusion from donors after cardiac death. Artificial Organs, 40, 999–1008.CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Nicholson, M. L., & Hosgood, S. A. (2013). Renal transplantation after ex vivo normothermic perfusion: The first clinical study. American Journal of Transplantation, 13, 1246–1252.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Niemeier, R. W. (1984). The isolated perfused lung. Environmental Health Perspectives, 56, 35–41.PubMedCentralCrossRefPubMedGoogle Scholar
  165. 165.
    Norden, M. A., Rao, V. K., & Southard, J. H. (1997). Improved preservation of rat hindlimbs with the University of Wisconsin solution and butanedione monoxime. Plastic and Reconstructive Surgery, 100, 957–965.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Nyrén, O., Blank, M. A., & Jaffe, B. M. (1992). Evaluation of a rat model for the study of local regulation of intestinal blood flow: Ex vivo asanguineous perfusion of the ileal vascular bed. The Journal of Surgical Research, 53, 455–463.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    O’Callaghan, J., Leuvenink, H. G. D., Friend, P. J., & Ploeg, R. J. (2013a). Kidney preservation. In P. Morris & S. J. Knechtle (Eds.), Kidney transplantation: Principles and practice (7th ed., pp. 130–141). New York: Saunders.Google Scholar
  168. 168.
    O’Callaghan, J. M., Morgan, R. D., Knight, S. R., & Morris, P. J. (2013b). Systematic review and meta-analysis of hypothermic machine perfusion versus static cold storage of kidney allografts on transplant outcomes. The British Journal of Surgery, 100, 991–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    O’Donovan, M. J., Rowlerson, A., & Taylor, A. (1976). Proceedings: Contraction characteristics and histochemistry of motor units studied in perfused human limb muscles. The Journal of Physiology, 257, 24P–25P.PubMedPubMedCentralGoogle Scholar
  170. 170.
    O’Malley, V. P., Keyes, D. M., & Postier, R. G. (1986). The fluosol-perfused isolated canine pancreas: A model for the study of blood component effects in acute pancreatitis. The Journal of Surgical Research, 40, 210–215.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Okada, N., Mizuta, K., Oshima, M., et al. (2015). A novel split liver protocol using the subnormothermic oxygenated circuit system in a porcine model of a marginal donor procedure. Transplantation Proceedings, 47, 419–426.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Okamoto, T., Wheeler, D., Liu, Q., et al. (2016). Correlation between PaO2/FiO2 and airway and vascular parameters in the assessment of cellular ex vivo lung perfusion system. The Journal of Heart and Lung Transplantation, 35(11), 1330–1336.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Okamoto, T., Wheeler, D., Liu, Q., et al. (2015). Variability in pressure of arterial oxygen to fractional inspired oxygen concentration ratio during cellular ex vivo lung perfusion: Implication for decision making. Transplantation, 99, 2504–2513.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Olschewski, P., Gass, P., Ariyakhagorn, V., et al. (2010). The influence of storage temperature during machine perfusion on preservation quality of marginal donor livers. Cryobiology, 60, 337–343.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Oltean, M., & Olausson, M. (2010). The Chiu/park scale for grading intestinal ischemia-reperfusion: If it ain’t broke don't fix it! Intensive Care Medicine, 36, 1095. author reply 1096.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    op den Dries, S., Karimian, N., Sutton, M. E., et al. (2013). Ex vivo normothermic machine perfusion and viability testing of discarded human donor livers. American Journal of Transplantation, 13, 1327–1335.CrossRefGoogle Scholar
  177. 177.
    Op den Dries, S., Sutton, M. E., Karimian, N., et al. (2014). Hypothermic oxygenated machine perfusion prevents arteriolonecrosis of the peribiliary plexus in pig livers donated after circulatory death. PloS One, 9, e88521.CrossRefGoogle Scholar
  178. 178.
    Opelz, G., & Terasaki, P. I. (1982). Advantage of cold storage over machine perfusion for preservation of cadaver kidneys. Transplantation, 33, 64–68.CrossRefPubMedGoogle Scholar
  179. 179.
    Ozer, K., Rojas-Pena, A., Mendias, C. L., et al. (2015). Ex situ limb perfusion system to extend vascularized composite tissue allograft survival in Swine. Transplantation, 99, 2095–2101.CrossRefPubMedGoogle Scholar
  180. 180.
    Ozer, K., Rojas-Pena, A., Mendias, C. L., et al. (2016). The effect of ex situ perfusion in a Swine limb vascularized composite tissue allograft on survival up to 24 hours. Journal of Hand Surgery American, 41, 3–12.CrossRefGoogle Scholar
  181. 181.
    Parrish, D., Lindell, S. L., Reichstetter, H., et al. (2015). Cell Impermeant-based low-volume resuscitation in hemorrhagic shock: A biological basis for injury involving cell swelling. Annals of Surgery, 263, 565–572.CrossRefGoogle Scholar
  182. 182.
    Pascual, J., Zamora, J., & Pirsch, J. D. (2008). A systematic review of kidney transplantation from expanded criteria donors. American Journal of Kidney Diseases, 52, 553–586.CrossRefPubMedGoogle Scholar
  183. 183.
    Patel, S. K., Pankewycz, O. G., Nader, N. D., et al. (2012). Prognostic utility of hypothermic machine perfusion in deceased donor renal transplantation. Transplantation Proceedings, 44, 2207–2212.CrossRefPubMedGoogle Scholar
  184. 184.
    Pegg, D. E., & Green, C. J. (1976). Renal preservation by hypothermic perfusion. III. The lack of influence of pulsatile flow. Cryobiology, 13, 161–167.CrossRefPubMedGoogle Scholar
  185. 185.
    Ploeg, R. J., Goossens, D., McAnulty, J. F., et al. (1988). Successful 72-hour cold storage of dog kidneys with UW solution. Transplantation, 46, 191–196.CrossRefPubMedGoogle Scholar
  186. 186.
    Poitras, P., Trudel, L., Miller, P., & Gu, C. M. (1997). Regulation of motilin release: Studies with ex vivo perfused canine jejunum. The American Journal of Physiology, 272, G4–G9.PubMedGoogle Scholar
  187. 187.
    Polyak, M. M., Arrington, B. O., Stubenbord, W. T., et al. (2000). The influence of pulsatile preservation on renal transplantation in the 1990s. Transplantation, 69, 249–258.CrossRefPubMedGoogle Scholar
  188. 188.
    Ravikumar, R., Jassem, W., Mergental, H., et al. (2016). Liver transplantation after ex vivo normothermic machine preservation: A phase 1 (first-in-man) clinical trial. American Journal of Transplantation, 16(6), 1779–1787.CrossRefPubMedGoogle Scholar
  189. 189.
    Reznik, O. N., Bagnenko, S. F., Loginov, I. V., et al. (2008). Machine perfusion as a tool to select kidneys recovered from uncontrolled donors after cardiac death. Transplantation Proceedings, 40, 1023–1026.CrossRefPubMedGoogle Scholar
  190. 190.
    Rijkmans, B. G., Buurman, W. A., & Kootstra, G. (1984). Six-day canine kidney preservation. Hypothermic perfusion combined with isolated blood perfusion. Transplantation, 37, 130–134.CrossRefPubMedGoogle Scholar
  191. 191.
    Rogers, J. W., Sellers, E. A., & Gornall, A. G. (1947). Intestinal perfusion in the treatment of uremia. Science, 106, 108.CrossRefPubMedGoogle Scholar
  192. 192.
    Rosen, H. M., Slivjak, M. J., & McBrearty, F. X. (1987). The role of perfusion washout in limb revascularization procedures. Plastic and Reconstructive Surgery, 80, 595–605.CrossRefPubMedGoogle Scholar
  193. 193.
    Ruiz, J. O., Schultz, L. S., Hendrickx, J., et al. (1971). Isolated intestinal perfusion: A method for assessing preservation methods and viability before transplantation. Transactions American Society for Artificial Internal Organs, 17, 42–48.PubMedGoogle Scholar
  194. 194.
    Russo, M. J., Chen, J. M., Sorabella, R. A., et al. (2007). The effect of ischemic time on survival after heart transplantation varies by donor age: An analysis of the United Network for Organ Sharing database. The Journal of Thoracic and Cardiovascular Surgery, 133, 554–559.CrossRefPubMedGoogle Scholar
  195. 195.
    Sanchez, P. G., Davis, R. D., D’Ovidio, F., et al. (2014). The NOVEL lung trial one-year outcomes. The Journal of Heart and Lung Transplantation, 33, S71–S72.CrossRefGoogle Scholar
  196. 196.
    Schlegel, A., Kron, P., Graf, R., et al. (2014). Warm vs. cold perfusion techniques to rescue rodent liver grafts. Journal of Hepatology, 61, 1267–1275.CrossRefPubMedGoogle Scholar
  197. 197.
    Schneeberger, S., Biebl, M., Steurer, W., et al. (2009). A prospective randomized multicenter trial comparing histidine-tryptophan-ketoglutarate versus University of Wisconsin perfusion solution in clinical pancreas transplantation. Transplant International, 22, 217–224.CrossRefPubMedGoogle Scholar
  198. 198.
    Schold, J. D., Kaplan, B., Howard, R. J., et al. (2005). Are we frozen in time? Analysis of the utilization and efficacy of pulsatile perfusion in renal transplantation. American Journal of Transplantation, 5, 1681–1688.CrossRefPubMedGoogle Scholar
  199. 199.
    Schön, M. R., Kollmar, O., Wolf, S., et al. (2001). Liver transplantation after organ preservation with normothermic extracorporeal perfusion. Annals of Surgery, 233, 114–123.PubMedCentralCrossRefPubMedGoogle Scholar
  200. 200.
    Seal, J. B., & Gewertz, B. L. (2005). Vascular dysfunction in ischemia-reperfusion injury. Annals of Vascular Surgery, 19, 572–584.CrossRefPubMedGoogle Scholar
  201. 201.
    Sgourakis, G., Papapanagiotou, A., Kontovounisios, C., et al. (2013). The value of plasma neurotensin and cytokine measurement for the detection of bowel ischaemia in clinically doubtful cases: A prospective study. Experimental Biology and Medicine (Maywood, N.J.), 238, 874–880.CrossRefGoogle Scholar
  202. 202.
    Shepherd, A. P., & Riedel, G. L. (1982). Effect of pulsatile pressure and metabolic rate on intestinal autoregulation. The American Journal of Physiology, 242, H769–H775.PubMedGoogle Scholar
  203. 203.
    Skrzypiec-Spring, M., Grotthus, B., Szelag, A., & Schulz, R. (2007). Isolated heart perfusion according to Langendorff – still viable in the new millennium. Journal of Pharmacological and Toxicological Methods, 55, 113–126.CrossRefPubMedGoogle Scholar
  204. 204.
    Southard, J. H., van Gulik, T. M., Ametani, M. S., et al. (1990). Important components of the UW solution. Transplantation, 49, 251–257.CrossRefPubMedGoogle Scholar
  205. 205.
    Stangl, M. J., Krapp, J., Theodorou, D., et al. (2000). Computer-assisted ex vivo, normothermic small bowel perfusion. Eur Surg Res Eur Chir Forschung Rech Chir Eur, 32, 100–106.Google Scholar
  206. 206.
    Starzl, T. E., Groth, C. G., Brettschneider, L., et al. (1968). Orthotopic homotransplantation of the human liver. Annals of Surgery, 168, 392–415.PubMedCentralCrossRefPubMedGoogle Scholar
  207. 207.
    Steen, S., Ingemansson, R., Eriksson, L., et al. (2007). First human transplantation of a nonacceptable donor lung after reconditioning ex vivo. The Annals of Thoracic Surgery, 83, 2191–2194.CrossRefPubMedGoogle Scholar
  208. 208.
    Steen, S., Liao, Q., Wierup, P. N., et al. (2003). Transplantation of lungs from non-heart-beating donors after functional assessment ex vivo. The Annals of Thoracic Surgery, 76, 244–252.CrossRefPubMedGoogle Scholar
  209. 209.
    Steen, S., Sjöberg, T., Pierre, L., et al. (2001). Transplantation of lungs from a non-heart-beating donor. Lancet, 357, 825–829.CrossRefPubMedGoogle Scholar
  210. 210.
    Stevanovic, M., & Sharpe, F. (2014). Functional free muscle transfer for upper extremity reconstruction. Plastic and Reconstructive Surgery, 134, 257e–274e.CrossRefPubMedGoogle Scholar
  211. 211.
    Straznicka, M., Follette, D. M., Eisner, M. D., et al. (2002). Aggressive management of lung donors classified as unacceptable: Excellent recipient survival one year after transplantation. The Journal of Thoracic and Cardiovascular Surgery, 124, 250–258.CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Sudan, D., Vargas, L., Sun, Y., et al. (2007). Calprotectin: A novel noninvasive marker for intestinal allograft monitoring. Annals of Surgery, 246, 311–315.PubMedCentralCrossRefPubMedGoogle Scholar
  213. 213.
    Sutton, M. E., op den Dries, S., Karimian, N., et al. (2014). Criteria for viability assessment of discarded human donor livers during ex vivo normothermic machine perfusion. PloS One, 9, e110642.PubMedCentralCrossRefPubMedGoogle Scholar
  214. 214.
    Taylor, M. J., Baicu, S., Leman, B., et al. (2008). Twenty-four hour hypothermic machine perfusion preservation of porcine pancreas facilitates processing for islet isolation. Transplantation Proceedings, 40, 480–482.PubMedCentralCrossRefPubMedGoogle Scholar
  215. 215.
    Taylor, M. J., & Baicu, S. C. (2010). Current state of hypothermic machine perfusion preservation of organs: The clinical perspective. Cryobiology, 60, S20–S35.CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Tersigni, R., Toledo-Pereyra, L. H., Pinkham, J., & Najarian, J. S. (1975). Pancreaticoduodenal preservation by hypothermic pulsatile perfusion for twenty-four hours. Annals of Surgery, 182, 743–748.PubMedCentralCrossRefPubMedGoogle Scholar
  217. 217.
    Thuillier, R., Allain, G., Celhay, O., et al. (2013). Benefits of active oxygenation during hypothermic machine perfusion of kidneys in a preclinical model of deceased after cardiac death donors. The Journal of Surgical Research, 184, 1174–1181.CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Tolboom, H., Izamis, M.-L., Sharma, N., et al. (2012). Subnormothermic machine perfusion at both 20°C and 30°C recovers ischemic rat livers for successful transplantation. The Journal of Surgical Research, 175, 149–156.CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Toledo-Pereyra, L. H., Condie, R. M., Malmberg, R., et al. (1974). A fibrinogen-free plasma perfusate for preservation of kidneys for one hundred and twenty hours. Surgery, Gynecology & Obstetrics, 138, 901–905.Google Scholar
  220. 220.
    Treckmann, J., Moers, C., Smits, J. M., et al. (2011). Machine perfusion versus cold storage for preservation of kidneys from expanded criteria donors after brain death. Transplant International, 24, 548–554.CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Uematsu, T., Asano, T., Enomoto, K., et al. (1987). Predictable viability assay of isolated canine liver using hypothermic continuous machine perfusion. Transplantation Proceedings, 19, 1321–1323.PubMedPubMedCentralGoogle Scholar
  222. 222.
    Usui, M., Sakata, H., & Ishii, S. (1985). Effect of fluorocarbon perfusion upon the preservation of amputated limbs. An experimental study. Journal of Bone and Joint Surgery British, 67, 473–477.CrossRefGoogle Scholar
  223. 223.
    Vairetti, M., Ferrigno, A., Carlucci, F., et al. (2009). Subnormothermic machine perfusion protects steatotic livers against preservation injury: A potential for donor pool increase? Liver Transplantation, 15, 20–29.CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Vairetti, M., Ferrigno, A., Rizzo, V., et al. (2008). Correlation between the liver temperature employed during machine perfusion and reperfusion damage: Role of Ca2+. Liver Transplantation, 14, 494–503.CrossRefPubMedPubMedCentralGoogle Scholar
  225. 225.
    Valapour, M., Paulson, K., Smith, J. M., et al. (2013). OPTN/SRTR 2011 annual data report: Lung. American Journal of Transplantation, 13(Suppl 1), 149–177.CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    Valapour, M., Skeans, M. A., Heubner, B. M., et al. (2015). OPTN/SRTR 2013 annual data report: Lung. American Journal of Transplantation, 15(Suppl 2), 1–28.CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Van Raemdonck, D., Neyrinck, A., Rega, F., et al. (2013). Machine perfusion in organ transplantation: A tool for ex-vivo graft conditioning with mesenchymal stem cells? Current Opinion in Organ Transplantation, 18, 24–33.CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Vercaemst, L. (2008). Hemolysis in cardiac surgery patients undergoing cardiopulmonary bypass: A review in search of a treatment algorithm. The Journal of Extra-Corporeal Technology, 40, 257–267.PubMedCentralPubMedGoogle Scholar
  229. 229.
    Vogel, T., Brockmann, J. G., Coussios, C., & Friend, P. J. (2012). The role of normothermic extracorporeal perfusion in minimizing ischemia reperfusion injury. Transplantation Reviews (Orlando, Fla.), 26, 156–162.CrossRefGoogle Scholar
  230. 230.
    Wagner, S. M., Nogueira, A. C., Paul, M., et al. (2003). The isolated normothermic hemoperfused porcine forelimb as a test system for transdermal absorption studies. Journal of Artificial Organs, 6, 183–191.CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Wallinder, A., Ricksten, S.-E., Hansson, C., et al. (2012). Transplantation of initially rejected donor lungs after ex vivo lung perfusion. The Journal of Thoracic and Cardiovascular Surgery, 144, 1222–1228.CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Warnecke, G., Moradiellos, J., Tudorache, I., et al. (2012). Normothermic perfusion of donor lungs for preservation and assessment with the organ care system lung before bilateral transplantation: A pilot study of 12 patients. Lancet, 380, 1851–1858.CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Watson, C. J. E., Kosmoliaptsis, V., Randle, L. V., et al. (2016). Preimplant normothermic liver perfusion of a suboptimal liver donated after circulatory death. American Journal of Transplantation, 16, 353–357.CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Watson, C. J. E., Wells, A. C., Roberts, R. J., et al. (2010). Cold machine perfusion versus static cold storage of kidneys donated after cardiac death: A UK multicenter randomized controlled trial. American Journal of Transplantation, 10, 1991–1999.CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Westbroek, D. L., De Gruyl, J., Dijkhuis, C. M., et al. (1974). Twenty-four-hour hypothermic preservation perfusion and storage of the duct-ligated canine pancreas with transplantation. Transplantation Proceedings, 6, 319–322.PubMedPubMedCentralGoogle Scholar
  236. 236.
    Wicomb, W. N., Cooper, D. K., Novitzky, D., & Barnard, C. N. (1984). Cardiac transplantation following storage of the donor heart by a portable hypothermic perfusion system. The Annals of Thoracic Surgery, 37, 243–248.CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Wierup, P., Haraldsson, A., Nilsson, F., et al. (2006). Ex vivo evaluation of nonacceptable donor lungs. The Annals of Thoracic Surgery, 81, 460–466.CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Wight, J., Chilcott, J., Holmes, M., & Brewer, N. (2003a). The clinical and cost-effectiveness of pulsatile machine perfusion versus cold storage of kidneys for transplantation retrieved from heart-beating and non-heart-beating donors. Health Technology Assessment, 7, 1–94.CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Wight, J. P., Chilcott, J. B., Holmes, M. W., & Brewer, N. (2003b). Pulsatile machine perfusion vs. cold storage of kidneys for transplantation: A rapid and systematic review. Clinical Transplantation, 17, 293–307.CrossRefPubMedPubMedCentralGoogle Scholar
  240. 240.
    Wilson, C. (2009). Perfusate development for the NHBD. In D. Talbot & A. M. D’Alessandro (Eds.), Organ donation and transplantation after cardiac death (pp. 67–102). New York: Oxford University Press.CrossRefGoogle Scholar
  241. 241.
    Wright, F. H., Wright, C., Ames, S. A., et al. (1990). Pancreatic allograft thrombosis: Donor and retrieval factors and early postperfusion graft function. Transplantation Proceedings, 22, 439–441.PubMedPubMedCentralGoogle Scholar
  242. 242.
    Xu, H., Berendsen, T., Kim, K., et al. (2012). Excorporeal normothermic machine perfusion resuscitates pig DCD livers with extended warm ischemia. The Journal of Surgical Research, 173, e83–e88.CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Yeung, J. C., Cypel, M., Machuca, T. N., et al. (2012). Physiologic assessment of the ex vivo donor lung for transplantation. The Journal of Heart and Lung Transplantation, 31, 1120–1126.CrossRefPubMedPubMedCentralGoogle Scholar
  244. 244.
    Young, J. B., Naftel, D. C., Bourge, R. C., et al. (1994). Matching the heart donor and heart transplant recipient. Clues for successful expansion of the donor pool: A multivariable, multiinstitutional report. The cardiac transplant research database group. The Journal of Heart and Lung Transplantation, 13, 353–365.PubMedPubMedCentralGoogle Scholar
  245. 245.
    Zhu, J. Z. J., Castillo, E. G., Salehi, P., et al. (2003). A novel technique of hypothermic luminal perfusion for small bowel preservation. Transplantation, 76, 71–76.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Matthew F. Blum
    • 1
  • Qiang Liu
    • 1
  • Basem Soliman
    • 1
  • Toshihiro Okamoto
    • 1
  • Bahar Bassiri-Gharb
    • 1
  • Teresa Diago Uso
    • 1
  • Laura D. Buccini
    • 1
  • Cristiano Quintini
    • 1
    Email author
  1. 1.Cleveland Clinic Transplant CenterClevelandUSA

Personalised recommendations