Technological Advances in Organ Transplantation pp 277-295 | Cite as
Xenotransplantation
Abstract
Shortages in the number of available donor organs continue to force the transplant community to seek alternative options in an effort to meet the high demand. Cross species, or xenotransplantation, using swine as potential donors, has long been hypothesized as a potential attractive strategy for solving the organ shortage crisis due to the supply of available donors, as well as anatomical and physiological similarities between swine and humans. Early studies with wild-type swine donors were limited due to shortened survival as a result of acute humoral xenograft rejection due to circulating preformed antibodies. The eventual development of α-1,3-galactosyltransferase knock-out swine donors in the early 2000s has been critical in advancing preclinical xenotransplantation research, and more recently through significant improvements in genetic engineering technology such as CRISPR/Cas9, the development of multitransgenic swine donors has allowed xenotransplantation to progress closer to becoming a clinical reality. Here, we provide a brief overview of early clinical xenotransplantation experience, followed by major technological advances and current barriers to solid organ (kidney, liver, heart, and lung) and islet cell xenotransplantation.
References
- 1.OPTN Stats OPTN. (2016). Organ Procurement and Transplantation Network. http://optn.transplant.hrsa.gov. Last accessed on 28 Mar 2016.
- 2.Cooper, D. K. C., Gollackner, B., & Sachs, D. H. (2002). Will the pig solve the transplantation backlog? Annual Review of Medicine, 53(53), 133–147.CrossRefPubMedGoogle Scholar
- 3.Ekser, B., Ezzelarab, M., Hara, H., Van Der Windt, D. J., Wijkstrom, M., Bottino, R., et al. (2012). Clinical xenotransplantation: The next medical revolution? Lancet, 379(9816), 672–683.CrossRefPubMedGoogle Scholar
- 4.Ibrahim, Z., Busch, J., Awwad, M., Wagner, R., Wells, K., & Cooper, D. K. C. (2006). Selected physiologic compatibilities and incompatibilities between human and porcine organ systems. Xenotransplantation, 13(6), 488–499.CrossRefPubMedGoogle Scholar
- 5.Sachs, D. H. (1994). The pig as a xenograft donor. Pathologie Biologie (Paris), 42(3), 217–219.Google Scholar
- 6.Editorial. (1999). US guidelines on xenotransplantation. Nature Medicine, 5(5), 465.CrossRefGoogle Scholar
- 7.Reemtsma, K., Mccracken, B. H., Schlegel, J. U., & Pearl, M. (1964). Heterotransplantation of the kidney: Two clinical experiences. Science, 143(3607), 700–702.CrossRefPubMedGoogle Scholar
- 8.Hardy, J. D., Kurrus, F. D., Chavez, C. M., Neely, W. A., Eraslan, S., Turner, M. D., et al. (1964). Heart transplantation in man. Developmental studies and report of a case. Journal of the American Medical Association, 188(13), 1132–1140.PubMedGoogle Scholar
- 9.Starzl, T. E., Fung, J., Tzakis, A., Todo, S., Demetris, A. J., Marino, I. R., et al. (1993). Baboon-to-human liver transplantation. Lancet, 341(8837), 65–71.CrossRefPubMedPubMedCentralGoogle Scholar
- 10.Lai, L., Kolber-Simonds, D., Park, K. W., Cheong, H. T., Greenstein, J. L., Im, G. S., et al. (2002). Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science, 295(5557), 1089–1092.CrossRefPubMedGoogle Scholar
- 11.Ekser, B., Rigotti, P., Gridelli, B., & Cooper, D. K. C. (2009). Xenotransplantation of solid organs in the pig-to-primate model. Transplant Immunology, 21(2), 87–92.CrossRefPubMedGoogle Scholar
- 12.Byrne, G. W., McGregor, C. G. A., & Breimer, M. E. (2015). Recent investigations into pig antigen and anti-pig antibody expression. International Journal of Surgery, 23, 223–228.CrossRefPubMedGoogle Scholar
- 13.Azimzadeh, A. M., Byrne, G. W., Ezzelarab, M., Welty, E., Braileanu, G., Cheng, X., et al. (2008). Development of a consensus protocol to quantify primate anti-non-gal xenoreactive antibodies using pig aortic endothelial cells. Xenotransplantation, 21(6), 555–566.CrossRefGoogle Scholar
- 14.Butler, J. R., Ladowski, J. M., Martens, G. R., Tector, M., & Tector, A. J. (2015). Recent advances in genome editing and creation of genetically modified pigs. International Journal of Surgery, 23, 217–222.CrossRefPubMedGoogle Scholar
- 15.Mali, P., Esvelt, K. M., & Church, G. M. (2013). Cas9 as a versatile tool for engineering biology. Nature Methods, 10(10), 957–963.CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Feng, W., Dai, Y., Mou, L., Cooper, D. K. C., Shi, D., & Cai, Z. (2015). The potential of the combination of CRISPR/Cas9 and pluripotent stem cells to provide human organs from chimaeric pigs. International Journal of Molecular Sciences, 16(3), 6545–6556.CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Li, P., Estrada, J. L., Burlak, C., Montgomery, J., Butler, J. R., Santos, R. M., et al. (2015). Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection. Xenotransplantation, 22(1), 20–31.CrossRefPubMedGoogle Scholar
- 18.Cooper, D. K. C., Ekser, B., & Tector, A. J. (2015). Immunobiological barriers to xenotransplantation. International Journal of Surgery, 23, 211–216.CrossRefPubMedGoogle Scholar
- 19.Ramsoondar, J., Vaught, T., Ball, S., Mendicino, M., Monahan, J., Jobst, P., et al. (2009). Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation, 16(3), 164–180.CrossRefPubMedGoogle Scholar
- 20.Dieckhoff, B., Petersen, B., Kues, W. A., Kurth, R., Niemann, H., & Denner, J. (2008). Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation, 15(1), 36–45.CrossRefPubMedGoogle Scholar
- 21.Yang, L., Güell, M., Niu, D., George, H., Lesha, E., Grishin, D., et al. (2015 Nov 27). Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 350(6264), 1101–1104.CrossRefPubMedGoogle Scholar
- 22.Lambrigts, D., Sachs, D. H., & Cooper, D. K. (1998 Sep 15). Discordant organ xenotransplantation in primates: World experience and current status. Transplantation, 66(5), 547–561.CrossRefPubMedGoogle Scholar
- 23.Baldana, N., Rigotti, P., Calabrese, F., Cadrobbi, R., Dedja, A., Iacopetti, I., et al. (2004). Ureteral stenosis in HDAF pig-to-primate renal xenotransplantation: A phenomenon related to immunological events? American Journal of Transplantation, 4(4), 475–481.CrossRefGoogle Scholar
- 24.Yamada, K., Yazawa, K., Shimizu, A., Iwanaga, T., Hisashi, Y., Nuhn, M., et al. (2005). Marked prolongation of porcine renal xenograft survival in baboons through the use of alpha1,3-galactosyltransferase gene-knockout donors and the Cotransplantation of vascularized Thymic tissue. Nature Medicine, 11(1), 32–34.CrossRefPubMedGoogle Scholar
- 25.Buhler, L., Awwad, M., Basker, M., Gojo, S., Watts, A., Treter, S., et al. (2000). High-dose porcine hematopoeitic cell transplantation combined with CD40 ligand blockade in baboons prevents an induced anti-pig humoral response. Transplantation, 69(11), 2296–2304.CrossRefPubMedGoogle Scholar
- 26.Iwase, H., Ekser, B., Satyananda, V., Bhama, J., Hara, H., Ezzelarab, M., et al. (2015). Pig-to-baboon heterotopic heart transplantation – exploratory preliminary experience with pigs transgenic for human thrombomodulin and comparison of three costimulation blockade-based regimens. Xenotransplantation, 22, 211–220.CrossRefPubMedPubMedCentralGoogle Scholar
- 27.Shimizu, A., Yamada, K., Yamamoto, S., Lavelle, J. M., Barth, R. N., Robson, S. C., et al. (2005). Thrombotic microangiopathic glomerulopathy in human decay accelerating factor-transgenic swine-to-baboon kidney xenografts. Journals of the American Society of Nephrology, 16(9), 2732–2745.CrossRefGoogle Scholar
- 28.Ierino, F. L., Kozlowski, T., Siegel, J. B., Shimizu, A., Colvin, R. B., Banerjee, P. T., et al. (1998). Disseminated intravascular coagulation in association with the delayed rejection of pig-to-baboon renal xenografts. Transplantation, 66(11), 1439–1450.CrossRefPubMedGoogle Scholar
- 29.Miwa, Y., Yamamoto, K., Onishi, A., Iwamoto, M., Yazaki, S., Haneda, M., et al. (2010). Potential value of human thrombomodulin and DAF expression for coagulation control in pig-to-human xenotransplantation. Xenotransplantation, 17(1), 26–37.CrossRefPubMedGoogle Scholar
- 30.Iwase, H., Ezzelarab, M. B., Ekser, B., & Cooper, D. K. C. (2014). The role of platelets in coagulation dysfunction in xenotransplantation, and therapeutic options. Xenotransplantation, 21(3), 201–220.CrossRefPubMedGoogle Scholar
- 31.Higginbotham, L., Mathews, D., Breeden, C. A., Song, M., Farris, A. B., Larsen, C. P., et al. (2015). Pre-transplant antibody screening and anti-CD154 costimulation blockade promote long-term xenograft survival in a pig-to-primate kidney transplant model. Xenotransplantation, 22, 221–230.CrossRefPubMedPubMedCentralGoogle Scholar
- 32.Iwase, H., Liu, H., Wijkstrom, M., Zhou, H., Singh, J., Hara, H., et al. (2015). Pig kidney graft survival in a baboon for 136 days: Longest life-supporting organ graft survival to date. Xenotransplantation, 22(4), 302–309.CrossRefPubMedPubMedCentralGoogle Scholar
- 33.Tasaki, M., Shimizu, A., Hanekamp, I., Torabi, R., Villani, V., & Yamada, K. (2014). Rituximab treatment prevents the early development of proteinuria following pig-to-baboon xeno-kidney transplantation. Journals of the American Society of Nephrology, 25(4), 737–744.CrossRefGoogle Scholar
- 34.Soin, B., Ostlie, D., Cozzi, E., Smith, K. G., Bradley, J. R., Vial, C., et al. (2000). Growth of porcine kidneys in their native and xenograft environment. Xenotransplantation, 7(2), 96–100.CrossRefPubMedGoogle Scholar
- 35.Higginbotham, L., Mathews, D., Stephenson, A., Breeden, C., Larsen, C., & For, M. (2015). Long-term survival of pig-to-primate renal xenotransplant using costimulation-blockade immunosuppression. Xenotransplantation, 22(Supplement:S45).CrossRefPubMedPubMedCentralGoogle Scholar
- 36.Calne, R. Y., White, H. J., Herbertson, B. M., Millard, P. R., Davis, D. R., Salaman, J. R., et al. (1968). Pig-to-baboon liver xenografts. Lancet, 1(7553), 1176–1178.CrossRefPubMedGoogle Scholar
- 37.Ramirez, P., Chavez, R., Majado, M., Munitiz, V., Muñoz, A., Hernandez, Q., et al. (2000). Life-supporting human complement regulator decay accelerating factor transgenic pig liver xenograft maintains the metabolic function and coagulation in the nonhuman primate for up to 8 days. Transplantation, 70(7), 989–998.CrossRefPubMedGoogle Scholar
- 38.Ekser, B., Long, C., Echeverri, G. J., Hara, H., Ezzelarab, M., Lin, C. C., et al. (2010). Impact of thrombocytopenia on survival of baboons with genetically modified pig liver transplants. American Journal of Transplantation, 10, 273–285.CrossRefPubMedGoogle Scholar
- 39.Ekser, B., Echeverri, G. J., Hassett, A. C., Yazer, M. H., Long, C., Meyer, M., et al. (2010). Hepatic function after genetically engineered pig liver transplantation in baboons. Transplantation, 90, 483–493.CrossRefPubMedPubMedCentralGoogle Scholar
- 40.Kim, K., Schuetz, C., Elias, N., Veillette, G. R., Wamala, I., Varma, M., et al. (2012). Up to 9-day survival and control of thrombocytopenia following alpha1,3-galactosyl transferase knockout swine liver xenotransplantation in baboons. Xenotransplantation, 19, 256–264.CrossRefPubMedPubMedCentralGoogle Scholar
- 41.Navarro-Alvarez, N., Shah, J. A., Zhu, A., Ligocka, J., Yeh, H., Elias, N., et al. (2016). The effects of exogenous administration of human coagulation factors following pig-to-baboon liver xenotransplantation. American Journal of Transplantation, 16(6), 1715–1725.CrossRefPubMedPubMedCentralGoogle Scholar
- 42.Shah, J. A., Navarro-Alvarez, N., DeFazio, M., Rosales, I., Elias, N., Yeh, H., et al. (2016). A bridge to somewhere: 25-day survival following pig-to-baboon liver xenotransplantation. Annals of Surgery, 263(6), 1069–1071.CrossRefPubMedGoogle Scholar
- 43.Kobayashi, T., Taniguchi, S., Ye, Y., Niekrasz, M., Nour, B., & Cooper, D. K. (1998 Apr). Comparison of bile chemistry between humans, baboons, and pigs: Implications for clinical and experimental liver xenotransplantation. Laboratory Animal Science, 48(2), 197–200.PubMedGoogle Scholar
- 44.Ekser, B., Lin, C. C., Long, C., Echeverri, G. J., Hara, H., Ezzelarab, M., et al. (2012 Aug). Potential factors influencing the development of thrombocytopenia and consumptive coagulopathy after genetically modified pig liver xenotransplantation. Transplant International, 25(8), 882–896.CrossRefPubMedPubMedCentralGoogle Scholar
- 45.Paris, L. L., Chihara, R. K., Sidner, R. A., Joseph Tector, A., & Burlak, C. (2012). Differences in human and porcine platelet oligosaccharides may influence phagocytosis by liver sinusoidal cells in vitro. Xenotransplantation, 19(1), 31–39.CrossRefPubMedGoogle Scholar
- 46.Peng, Q., Yeh, H., Wei, L., Enjyoj, K., Machaidze, Z., Csizmad, E., et al. (2012). Mechanisms of xenogeneic baboon platelet aggregation and phagocytosis by porcine liver sinusoidal endothelial cells. PloS One, 7(10), 1–7.CrossRefGoogle Scholar
- 47.Ekser, B., Markmann, J. F., & Tector, A. J. (2015). Current status of pig liver xenotransplantation. International Journal of Surgery, 23, 1–7.CrossRefGoogle Scholar
- 48.Mohiuddin, M. M., Reichart, B., Byrne, G. W., & McGregor, C. G. A. (2015). Current status of pig heart xenotransplantation. International Journal of Surgery, 23, 234–239.CrossRefPubMedGoogle Scholar
- 49.Buhler, L., Friedman, T., Iacomini, J., & Cooper, D. K. (1999). Xenotransplantation – state of the art – update 1999. Frontiers in Bioscience, 4(D4), 16–32.Google Scholar
- 50.Kuwaki, K., Knosalla, C., Dor, F. J. M. F., Gollackner, B., Tseng, Y. L., Houser, S., et al. (2004). Suppression of natural and elicited antibodies in pig-to-baboon heart transplantation using a human anti-human CD154 mAb-based regimen. American Journal of Transplantation, 4(3), 363–372.CrossRefPubMedGoogle Scholar
- 51.Kuwaki, K., Tseng, Y. L., Dor, F. J., Shimizu, A., Houser, S. L., Lancos, C. J., et al. (2005). Heart transplantation in baboons using alpha1,3-galactosyltransferase gene- knockout pigs as donors: Initial experience. Nature Medicine, 11(1), 29–31.CrossRefPubMedGoogle Scholar
- 52.Tseng, Y.-L., Kuwaki, K., Dor, F. J. M. F., Shimizu, A., Houser, S., Hisashi, Y., et al. (2005). alpha1,3-galactosyltransferase gene-knockout pig heart transplantation in baboons with survival approaching 6 months. Transplantation, 80(10), 1493–1500.CrossRefPubMedGoogle Scholar
- 53.Mohiuddin, M. M., Corcoran, P. C., Singh, A. K., Azimzadeh, A., Hoyt, R. F., Thomas, M. L., et al. (2012). B-cell depletion extends the survival of GTKO.hCD46Tg pig heart xenografts in baboons for up to 8 months. American Journal of Transplantation, 12(3), 763–771.CrossRefPubMedGoogle Scholar
- 54.Mohiuddin, M. M., Singh, A. K., Corcoran, P. C., Hoyt, R. F., Thomas, M. L., Lewis, B. G. T., et al. (2014). Role of anti-CD40 antibody-mediated costimulation blockade on non-gal antibody production and heterotopic cardiac xenograft survival in a GTKO.hCD46Tg pig-to-baboon model. Xenotransplantation, 21(1), 35–45.CrossRefPubMedGoogle Scholar
- 55.Mohiuddin, M. M., Singh, A. K., Corcoran, P. C., Thomas Iii, M. L., Clark, T., Lewis, B. G., et al. (2016). Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nature Communications, 7, 11138.CrossRefPubMedPubMedCentralGoogle Scholar
- 56.Iwase, H., Ekser, B., Satyananda, V., Bhama, J., Hara, H., Ezzelarab, M., et al. (2015). Pig-to-baboon heterotopic heart transplantation – exploratory preliminary experience with pigs transgenic for human thrombomodulin and comparison of three costimulation blockade-based regimens. Xenotransplantation, 23, 211–220.CrossRefGoogle Scholar
- 57.Barnard, C. N., Losman, J. G., Curcio, C. A., Sanchez, H. E., Wolpowitz, A., & Barnard, M. S. (1977). The advantage of heterotopic cardiac transplantation over orthotopic cardiac transplantation in the management of severe acute rejection. The Journal of Thoracic and Cardiovascular Surgery, 74(6), 918–924.PubMedGoogle Scholar
- 58.Bauer, A., Postrach, J., Thormann, M., Blanck, S., Faber, C., Wintersperger, B., et al. (2010). First experience with heterotopic thoracic pig-to-baboon cardiac xenotransplantation. Xenotransplantation, 17(3), 243–249.CrossRefPubMedGoogle Scholar
- 59.Mohiuddin, M. M., Singh, A. K., Corcoran, P. C., Hoyt, R. F., Thomas, M. L., Ayares, D., et al. (2014 Sep). Genetically engineered pigs and target-specific immunomodulation provide significant graft survival and hope for clinical cardiac xenotransplantation. The Journal of Thoracic and Cardiovascular Surgery, 148(3), 1106–1114.CrossRefPubMedPubMedCentralGoogle Scholar
- 60.Cooper, D. K., Keogh, A. M., Brink, J., Corris, P. A., Klepetko, W., Pierson, R. N., et al. (2000). Report of the Xenotransplantation Advisory Committee of the International Society for Heart and Lung Transplantation: The present status of xenotransplantation and its potential role in the treatment of end-stage cardiac and pulmonary diseases. The Journal of Heart and Lung Transplantation, 19(12), 1125–1165.CrossRefPubMedGoogle Scholar
- 61.Byrne, G. W., Du, Z., Sun, Z., Asmann, Y. W., & McGregor, C. G. A. (2011). Changes in cardiac gene expression after pig-to-primate orthotopic xenotransplantation. Xenotransplantation, 18(1), 14–27.CrossRefPubMedGoogle Scholar
- 62.McGregor, C. G. A., Ricci, D., Miyagi, N., Stalboerger, P. G., Du, Z., Oehler, E. A., et al. (2012). Human CD55 expression blocks hyperacute rejection and restricts complement activation in gal knockout cardiac xenografts. Transplantation, 93(7), 686–692.CrossRefPubMedPubMedCentralGoogle Scholar
- 63.Wheeler, D. G., Joseph, M. E., Mahamud, S. D., Aurand, W. L., Mohler, P. J., Pompili, V. J., et al. (2012). Transgenic swine: Expression of human CD39 protects against myocardial injury. Journal of Molecular and Cellular Cardiology, 52(5), 958–961.CrossRefPubMedPubMedCentralGoogle Scholar
- 64.den Hengst, W. A., Gielis, J. F., Lin, J. Y., Van Schil, P. E., De Windt, L. J., & Moens, A. L. (2010). Lung ischemia-reperfusion injury: A molecular and clinical view on a complex pathophysiological process. American Journal of Physiology, Heart and Circulatory Physiology, 299(5), H1283–H1299.CrossRefGoogle Scholar
- 65.Ranieri, V., Suter, P., Tortorella, C., De Tullio, R., Dayer, J., Brienza, A., et al. (1999). Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: A randomized controlled trial. Journal of the American Medical Association, 282(1), 54–61.CrossRefPubMedGoogle Scholar
- 66.Pierson, R. N. (2009). Antibody-mediated xenograft injury: Mechanisms and protective strategies. Transplant Immunology, 21(2), 65–69.CrossRefPubMedPubMedCentralGoogle Scholar
- 67.Nguyen, B. N. H., Azimzadeh, A. M., Zhang, T., Wu, G., Shuurman, H. J., Sachs, D. H., et al. (2007). Life-supporting function of genetically modified swine lungs in baboons. The Journal of Thoracic and Cardiovascular Surgery, 133(5), 1354–1363.CrossRefPubMedGoogle Scholar
- 68.Kubicki, N., Laird, C., Burdorf, L., Pierson, R. N., & Azimzadeh, A. M. (2015). Current status of pig lung xenotransplantation. International Journal of Surgery, 23, 247–254.CrossRefPubMedGoogle Scholar
- 69.Burdorf, L., Azimzadeh, A. M., & Pierson, R. N. (2012). Xenogeneic lung transplantation models. Methods in Molecular Biology, 885(4), 169–189.CrossRefPubMedGoogle Scholar
- 70.Sanchez, P. G., Bittle, G. J., Burdorf, L., Pierson, R. N., & Griffith, B. P. (2012). State of art: Clinical ex vivo lung perfusion: Rationale, current status, and future directions. The Journal of Heart and Lung Transplantation, 31(4), 339–348.CrossRefPubMedGoogle Scholar
- 71.Harris, D. G., Quinn, K. J., French, B. M., Schwartz, E., Kang, E., Dahi, S., et al. (2015). Meta-analysis of the independent and cumulative effects of multiple genetic modifications on pig lung xenograft performance during ex vivo perfusion with human blood. Xenotransplantation, 22(2), 102–111.CrossRefPubMedGoogle Scholar
- 72.Collins, B. J., Blum, M. G., Parker, R. E., Chang, A. C., Blair, K. S., Zorn, G. L., et al. (2001). Thromboxane mediates pulmonary hypertension and lung inflammation during hyperacute lung rejection. Journal of Applied Physiology, 90(6), 2257–2268.CrossRefPubMedGoogle Scholar
- 73.Cooper, D. K. C., Ekser, B., Burlak, C., Ezzelarab, M., Hara, H., Paris, L., et al. (2013). Clinical lung xenotransplantation – what donor genetic modifications may be necessary? Xenotransplantation, 19(3), 144–158.CrossRefGoogle Scholar
- 74.Kim, Y. T., Lee, H. J., Lee, S. W., Kim, J. Y., Wi, H. C., Park, S. J., et al. (2008). Pre-treatment of porcine pulmonary xenograft with desmopressin: A novel strategy to attenuate platelet activation and systemic intravascular coagulation in an ex-vivo model of swine-to-human pulmonary xenotransplantation. Xenotransplantation, 15(1), 27–35.CrossRefPubMedGoogle Scholar
- 75.Chen, D., Riesbeck, K., McVey, J. H., Kemball-Cook, G., Tuddenham, E. G., Lechler, R. I., et al. (1999). Regulated inhibition of coagulation by porcine endothelial cells expressing P-selectin-tagged hirudin and tissue factor pathway inhibitor fusion proteins. Transplantation, 68(6), 832–839.CrossRefPubMedGoogle Scholar
- 76.Shapiro, A. M., Lakey, J. R., Ryan, E. A., Korbutt, G. S., Toth, E., Warnock, G. L., et al. (2000 Jul 27). Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. The New England Journal of Medicine, 343(4), 230–238.CrossRefPubMedGoogle Scholar
- 77.Bottino, R., Balamurugan, A. N., Smetanka, C., Bertera, S., He, J., Rood, P. P. M., et al. (2007). Isolation outcome and functional characteristics of young and adult pig pancreatic islets for transplantation studies. Xenotransplantation, 14(1), 74–82.CrossRefPubMedGoogle Scholar
- 78.Eventov-Friedman, S., Tchorsh, D., Katchman, H., Shezen, E., Aronovich, A., Hecht, G., et al. (2006). Embryonic pig pancreatic tissue transplantation for the treatment of diabetes. PLoS Medicine, 3(7), 1165–1177.CrossRefGoogle Scholar
- 79.Hering, B. J., Wijkstrom, M., Graham, M. L., Hårdstedt, M., Aasheim, T. C., Jie, T., et al. (2006). Prolonged diabetes reversal after intraportal xenotransplantation of wild-type porcine islets in immunosuppressed nonhuman primates. Nature Medicine, 12(3), 301–303.CrossRefPubMedGoogle Scholar
- 80.Cardona, K., Korbutt, G. S., Milas, Z., Lyon, J., Cano, J., Jiang, W., et al. (2006). Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways. Nature Medicine, 12(3), 304–306.CrossRefPubMedGoogle Scholar
- 81.Van Der Windt, D. J., Bottino, R., Casu, A., Campanile, N., Smetanka, C., He, J., et al. (2009). Long-term controlled normoglycemia in diabetic non-human primates after transplantation with hCD46 transgenic porcine islets. American Journal of Transplantation, 9(12), 2716–2726.CrossRefPubMedGoogle Scholar
- 82.Thompson, P., Badell, I. R., Lowe, M., Cano, J., Song, M., Leopardi, F., et al. (2011 Dec). Islet xenotransplantation using gal-deficient neonatal donors improves engraftment and function. American Journal of Transplantation, 11(12), 2593–2602.CrossRefPubMedPubMedCentralGoogle Scholar
- 83.Park, C. G., Bottino, R., & Hawthorne, W. J. (2015). Current status of islet xenotransplantation. International Journal of Surgery, 23, 261–266.CrossRefPubMedGoogle Scholar
- 84.Hawthorne, W. J., Salvaris, E. J., Phillips, P., Hawkes, J., Liuwantara, D., Burns, H., et al. (2014). Control of IBMIR in neonatal porcine islet xenotransplantation in baboons. American Journal of Transplantation, 14(6), 1300–1309.CrossRefPubMedPubMedCentralGoogle Scholar
- 85.Thompson, P., Cardona, K., Russell, M., Badell, I. R., Shaffer, V., Korbutt, G., et al. (2011). CD40-specific costimulation blockade enhances neonatal porcine islet survival in nonhuman primates. American Journal of Transplantation, 11(5), 947–957.CrossRefPubMedPubMedCentralGoogle Scholar
- 86.Dufrane, D., Goebbels, R.-M., & Gianello, P. (2010). Alginate macroencapsulation of pig islets allows correction of streptozotocin-induced diabetes in primates up to 6 months without immunosuppression. Transplantation, 90(10), 1054–1062.CrossRefPubMedGoogle Scholar
- 87.Estrada, J. L., Martens, G., Li, P., Adams, A., Newell, K. A., Ford, M. L., et al. (2015). Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/β4GalNT2 genes. Xenotransplantation, 22(3), 194–202.CrossRefPubMedPubMedCentralGoogle Scholar
- 88.Cooper, D. K., Ekser, B., Ramsoondar, J., et al. (2016). The role of genetically engineered pigs in xenotransplantation. The Journal of Pathology, 238(2), 288–299.CrossRefPubMedGoogle Scholar