Technological Advances in Organ Transplantation pp 235-259 | Cite as
Ex Vivo Organ Repair (Drug and Gene Delivery)
Abstract
Lung transplantation is a life-saving intervention for patients with end-stage lung diseases. However, ultimately, the success of lung transplantation is dependent on the quality and function of the transplanted donor lungs, which are frequently subjected to multiple different injuries. Recent innovations, in particular the development of ex vivo lung perfusion (EVLP) in which donor lungs are preserved under normothermic conditions outside the body, have enabled clinicians to more accurately evaluate the donor lung function prior to transplantation and have significantly impacted donor lung assessment and utilization worldwide. The advancement of EVLP from organ assessment to organ repair will be the next important and challenging step not only to expand the donor lung pool but also to improve graft survival and long-term outcomes after transplantation. The application of enhanced EVLP techniques combined with targeted repairs and molecular therapeutic strategies, including gene and cell-based therapy, will result in improved rehabilitation of injured donor lungs and provide a framework for the application of a personalized medicine approach in lung transplantation.
References
- 1.Aigner, C., Slama, A., Hötzenecker, K., Scheed, A., Urbanek, B., Schmid, W., Nierscher, F. J., Lang, G., & Klepetko, W. (2012). Clinical ex vivo lung perfusion – Pushing the limits. American Journal of Transplantation, 12, 1839–1847. doi: 10.1111/j.1600-6143.2012.04027.x.CrossRefPubMedGoogle Scholar
- 2.Andreasson, A., Karamanou, D. M., Perry, J. D., Perry, A., Özalp, F., Butt, T., Morley, K. E., Walden, H. R., Clark, S. C., Prabhu, M., Corris, P. A., Gould, K., Fisher, A. J., & Dark, J. H. (2014). The effect of ex vivo lung perfusion on microbial load in human donor lungs. The Journal of Heart and Lung Transplantation, 33, 910–916. doi: 10.1016/j.healun.2013.12.023.CrossRefPubMedGoogle Scholar
- 3.Avlonitis, V. S., Krause, A., Luzzi, L., Powell, H., Phillips, J. A., Corris, P. A., Gould, F. K., & Dark, J. H. (2003). Bacterial colonization of the donor lower airways is a predictor of poor outcome in lung transplantation. European Journal of Cardio-Thoracic Surgery, 24, 601–607.CrossRefPubMedGoogle Scholar
- 4.Boehler, A., Chamberlain, D., Xing, Z., Slutsky, A. S., Jordana, M., Gauldie, J., Liu, M., & Keshavjee, S. (1998). Adenovirus-mediated interleukin-10 gene transfer inhibits post-transplant fibrous airway obliteration in an animal model of bronchiolitis obliterans. Human Gene Therapy, 9, 541–551. doi: 10.1089/hum.1998.9.4-541.CrossRefPubMedGoogle Scholar
- 5.Boffini, M., Ricci, D., Bonato, R., Fanelli, V., Attisani, M., Ribezzo, M., Solidoro, P., Del Sorbo, L., Ranieri, V. M., & Rinaldi, M. (2014). Incidence and severity of primary graft dysfunction after lung transplantation using rejected grafts reconditioned with ex vivo lung perfusion. European Journal of Cardio-Thoracic Surgery, 46, 789–793. doi: 10.1093/ejcts/ezu239.CrossRefPubMedGoogle Scholar
- 6.Bonde, P. N., Patel, N. D., Borja, M. C., Allan, S. H., Barreiro, C. J., Williams, J. A., Thakur, N. A., Orens, J. B., & Conte, J. V. (2006). Impact of donor lung organisms on post-lung transplant pneumonia. The Journal of Heart and Lung Transplantation, 25, 99–105. doi: 10.1016/j.healun.2005.06.026.CrossRefPubMedGoogle Scholar
- 7.Chang, R. S., Wright, K., & Effros, R. M. (1981). Role of albumin in prevention of edema in perfused rabbit lungs. Journal of Applied Physiology, 50, 1065–1070.CrossRefPubMedGoogle Scholar
- 8.Chastre, J., & Fagon, J.-Y. (2002). Ventilator-associated pneumonia. American Journal of Respiratory and Critical Care Medicine, 165, 867–903. doi: 10.1164/ajrccm.165.7.2105078.CrossRefPubMedGoogle Scholar
- 9.Comellas, A. P., & Briva, A. (2009). Role of endothelin-1 in acute lung injury. Translational Research, 153, 263–271. doi: 10.1016/j.trsl.2009.02.007.CrossRefPubMedPubMedCentralGoogle Scholar
- 10.Cypel, M., Kaneda, H., Yeung, J. C., Anraku, M., Yasufuku, K., De Perrot, M., Pierre, A., Waddell, T. K., Liu, M., & Keshavjee, S. (2011a). Increased levels of interleukin-1β and tumor necrosis factor-α in donor lungs rejected for transplantation. The Journal of Heart and Lung Transplantation, 30, 452–459. doi: 10.1016/j.healun.2010.11.012.CrossRefPubMedGoogle Scholar
- 11.Cypel, M., & Keshavjee, S. (2011). Extracorporeal lung perfusion. Current Opinion in Organ Transplantation, 16, 469–475. doi: 10.1097/MOT.0b013e32834ab15a.CrossRefPubMedGoogle Scholar
- 12.Cypel, M., Levvey, B., Van Raemdonck, D., Erasmus, M., Dark, J., Love, R., Mason, D., Glanville, A. R., Chambers, D., Edwards, L. B., Stehlik, J., Hertz, M., Whitson, B. A., Yusen, R. D., Puri, V., Hopkins, P., Snell, G., & Keshavjee, S. (2015). International Society for Heart and Lung Transplantation donation after circulatory death registry report. The Journal of Heart and Lung Transplantation, 34, 1278–1282. doi: 10.1016/j.healun.2015.08.015.CrossRefPubMedGoogle Scholar
- 13.Cypel, M., Liu, M., Rubacha, M., Yeung, J. C., Hirayama, S., Anraku, M., Sato, M., Medin, J., Davidson, B. L., de Perrot, M., Waddell, T. K., Slutsky, A. S., & Keshavjee, S. (2009a). Functional repair of human donor lungs by IL-10 gene therapy. Science Translational Medicine, 1, 4ra9. doi: 10.1126/scitranslmed.3000266.CrossRefPubMedGoogle Scholar
- 14.Cypel, M., Rubacha, M., Yeung, J., Hirayama, S., Torbicki, K., Madonik, M., Fischer, S., Hwang, D., Pierre, A., Waddell, T. K., De Perrot, M., Liu, M., & Keshavjee, S. (2009b). Normothermic ex vivo perfusion prevents lung injury compared to extended cold preservation for transplantation. American Journal of Transplantation, 9, 2262–2269. doi: 10.1111/j.1600-6143.2009.02775.x.CrossRefPubMedGoogle Scholar
- 15.Cypel, M., Yeung, J. C., Hirayama, S., Rubacha, M., Fischer, S., Anraku, M., Sato, M., Harwood, S., Pierre, A., Waddell, T. K., de Perrot, M., Liu, M., & Keshavjee, S. (2008). Technique for prolonged normothermic ex vivo lung perfusion. The Journal of Heart and Lung Transplantation, 27, 1319–1325. doi: 10.1016/j.healun.2008.09.003.CrossRefPubMedGoogle Scholar
- 16.Cypel, M., Yeung, J. C., Liu, M., Anraku, M., Chen, F., Karolak, W., Sato, M., Laratta, J., Azad, S., Madonik, M., Chow, C.-W., Chaparro, C., Hutcheon, M., Singer, L. G., Slutsky, A. S., Yasufuku, K., de Perrot, M., Pierre, A. F., Waddell, T. K., & Keshavjee, S. (2011b). Normothermic ex vivo lung perfusion in clinical lung transplantation. The New England Journal of Medicine, 364, 1431–1440. doi: 10.1056/NEJMoa1014597.CrossRefPubMedGoogle Scholar
- 17.Cypel, M., Yeung, J. C., Machuca, T., Chen, M., Singer, L. G., Yasufuku, K., de Perrot, M., Pierre, A., Waddell, T. K., & Keshavjee, S. (2012). Experience with the first 50 ex vivo lung perfusions in clinical transplantation. The Journal of Thoracic and Cardiovascular Surgery, 144, 1200–1206. doi: 10.1016/j.jtcvs.2012.08.009.CrossRefPubMedGoogle Scholar
- 18.de Perrot, M., Liu, M., Waddell, T. K., & Keshavjee, S. (2003a). Ischemia-reperfusion-induced lung injury. American Journal of Respiratory and Critical Care Medicine, 167, 490–511. doi: 10.1164/rccm.200207-670SO.CrossRefPubMedGoogle Scholar
- 19.De Perrot, M., Sekine, Y., Fischer, S., Waddell, T. K., McRae, K., Liu, M., Wigle, D. A., & Keshavjee, S. (2002). Interleukin-8 release during early reperfusion predicts graft function in human lung transplantation. American Journal of Respiratory and Critical Care Medicine, 165, 211–215. doi: 10.1164/ajrccm.165.2.2011151.CrossRefPubMedGoogle Scholar
- 20.de Perrot, M., Young, K., Imai, Y., Liu, M., Waddell, T. K., Fischer, S., Zhang, L., & Keshavjee, S. (2003b). Recipient T cells mediate reperfusion injury after lung transplantation in the rat. Journal of Immunology, 171, 4995–5002.CrossRefGoogle Scholar
- 21.Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317. doi: 10.1080/14653240600855905.CrossRefPubMedGoogle Scholar
- 22.Dong, B., Stewart, P. W., & Egan, T. M. (2013). Postmortem and ex vivo carbon monoxide ventilation reduces injury in rat lungs transplanted from non-heart-beating donors. The Journal of Thoracic and Cardiovascular Surgery, 146, 429–436.e1. doi: 10.1016/j.jtcvs.2012.11.005.CrossRefPubMedGoogle Scholar
- 23.Dong, B. M., Abano, J. B., & Egan, T. M. (2009). Nitric oxide ventilation of rat lungs from non-heart-beating donors improves posttransplant function. American Journal of Transplantation, 9, 2707–2715. doi: 10.1111/j.1600-6143.2009.02840.x.CrossRefPubMedGoogle Scholar
- 24.Elliott, M. R., Chekeni, F. B., Trampont, P. C., Lazarowski, E. R., Kadl, A., Walk, S. F., Park, D., Woodson, R. I., Ostankovich, M., Sharma, P., Lysiak, J. J., Harden, T. K., Leitinger, N., & Ravichandran, K. S. (2009). Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature, 461, 282–286. doi: 10.1038/nature08296.CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Eltzschig, H. K., & Eckle, T. (2011). Ischemia and reperfusion – From mechanism to translation. Nature Medicine, 17, 1391–1401. doi: 10.1038/nm.2507.CrossRefPubMedGoogle Scholar
- 26.Fischer, S., Liu, M., MacLean, A. A., de Perrot, M., Ho, M., Cardella, J. A., Zhang, X. M., Bai, X. H., Suga, M., Imai, Y., & Keshavjee, S. (2001). In vivo transtracheal adenovirus-mediated transfer of human interleukin-10 gene to donor lungs ameliorates ischemia-reperfusion injury and improves early posttransplant graft function in the rat. Human Gene Therapy, 12, 1513–1526. doi: 10.1089/10430340152480249.CrossRefPubMedGoogle Scholar
- 27.Fisk, R. L., Symes, J. F., Aldridge, L. L., & Couves, C. M. (1970). The pathophysiology and experimental therapy of acid pneumonitis in ex vivo lungs. Chest, 57, 364–370.CrossRefPubMedGoogle Scholar
- 28.Frank, J. A., Briot, R., Lee, J. W., Ishizaka, A., Uchida, T., & Matthay, M. A. (2007). Physiological and biochemical markers of alveolar epithelial barrier dysfunction in perfused human lungs. American Journal of Physiology. Lung Cellular and Molecular Physiology, 293, L52–L59. doi: 10.1152/ajplung.00256.2006.CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Gennai, S., Monsel, A., Hao, Q., Park, J., Matthay, M. A., & Lee, J. W. (2015). Microvesicles derived from human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. American Journal of Transplantation, 15, 2404–2412. doi: 10.1111/ajt.13271.CrossRefPubMedPubMedCentralGoogle Scholar
- 30.Giaid, A., Yanagisawa, M., Langleben, D., Michel, R. P., Levy, R., Shennib, H., Kimura, S., Masaki, T., Duguid, W. P., & Stewart, D. J. (1993). Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. The New England Journal of Medicine, 328, 1732–1739. doi: 10.1056/NEJM199306173282402.CrossRefPubMedGoogle Scholar
- 31.Gkaliagkousi, E., Ritter, J., & Ferro, A. (2007). Platelet-derived nitric oxide signaling and regulation. Circulation Research, 101, 654–662. doi: 10.1161/CIRCRESAHA.107.158410.CrossRefPubMedGoogle Scholar
- 32.Gomez-de-Antonio, D., Campo-Cañaveral, J. L., Crowley, S., Valdivia, D., Cordoba, M., Moradiellos, J., Naranjo, J. M., Ussetti, P., & Varela, A. (2012). Clinical lung transplantation from uncontrolled non-heart-beating donors revisited. The Journal of Heart and Lung Transplantation, 31, 349–353. doi: 10.1016/j.healun.2011.12.007.CrossRefPubMedGoogle Scholar
- 33.Haam, S., Lee, S., Paik, H. C., Park, M. S., Song, J. H., Lim, B. J., & Nakao, A. (2015). The effects of hydrogen gas inhalation during ex vivo lung perfusion on donor lungs obtained after cardiac death. European Journal of Cardio-Thoracic Surgery, 48, 542–547. doi: 10.1093/ejcts/ezv057.CrossRefPubMedGoogle Scholar
- 34.Hashimoto, K., Besla, R., Zamel, R., Kim, H., Saito, T., Azad, S., Waddell, T. K., Cypel, M., Liu, M., & Keshavjee, S. (2015). The impact of cell death signals on short and long term outcome in human lung transplantation. The Journal of Heart and Lung Transplantation, 34, 134.CrossRefGoogle Scholar
- 35.Hirayama, S., Sato, M., Liu, M., Loisel-Meyer, S., Yeung, J. C., Wagnetz, D., Cypel, M., Zehong, G., Medin, J. A., & Keshavjee, S. (2011). Local long-term expression of lentivirally delivered IL-10 in the lung attenuates obliteration of intrapulmonary allograft airways. Human Gene Therapy, 22, 1453–1460. doi: 10.1089/hum.2010.225.CrossRefPubMedGoogle Scholar
- 36.Hirayama, S., Sato, M., Loisel-Meyer, S., Matsuda, Y., Oishi, H., Guan, Z., Saito, T., Yeung, J., Cypel, M., Hwang, D. M., Medin, J. A., Liu, M., & Keshavjee, S. (2013). Lentivirus IL-10 gene therapy down-regulates IL-17 and attenuates mouse orthotopic lung allograft rejection. American Journal of Transplantation, 13, 1586–1593. doi: 10.1111/ajt.12230.CrossRefPubMedGoogle Scholar
- 37.Huang, C.-S., Kawamura, T., Toyoda, Y., & Nakao, A. (2010). Recent advances in hydrogen research as a therapeutic medical gas. Free Radical Research, 44, 971–982. doi: 10.3109/10715762.2010.500328.CrossRefPubMedGoogle Scholar
- 38.Inci, I., Ampollini, L., Arni, S., Jungraithmayr, W., Inci, D., Hillinger, S., Leskosek, B., Vogt, P., & Weder, W. (2008). Ex vivo reconditioning of marginal donor lungs injured by acid aspiration. The Journal of Heart and Lung Transplantation, 27, 1229–1236. doi: 10.1016/j.healun.2008.07.027.CrossRefPubMedGoogle Scholar
- 39.Inci, I., Yamada, Y., Hillinger, S., Jungraithmayr, W., Trinkwitz, M., & Weder, W. (2014). Successful lung transplantation after donor lung reconditioning with urokinase in ex vivo lung perfusion system. The Annals of Thoracic Surgery, 98, 1837–1838. doi: 10.1016/j.athoracsur.2014.01.076.CrossRefPubMedGoogle Scholar
- 40.Inci, I., Zhai, W., Arni, S., Inci, D., Hillinger, S., Lardinois, D., Vogt, P., & Weder, W. (2007). Fibrinolytic treatment improves the quality of lungs retrieved from non-heart-beating donors. The Journal of Heart and Lung Transplantation, 26, 1054–1060. doi: 10.1016/j.healun.2007.07.033.CrossRefPubMedGoogle Scholar
- 41.Ingemansson, R., Eyjolfsson, A., Mared, L., Pierre, L., Algotsson, L., Ekmehag, B., Gustafsson, R., Johnsson, P., Koul, B., Lindstedt, S., Lührs, C., Sjöberg, T., & Steen, S. (2009). Clinical transplantation of initially rejected donor lungs after reconditioning ex vivo. The Annals of Thoracic Surgery, 87, 255–260. doi: 10.1016/j.athoracsur.2008.09.049.CrossRefPubMedGoogle Scholar
- 42.Israni, A. K., Zaun, D. A., Rosendale, J. D., Snyder, J. J., & Kasiske, B. L. (2015). OPTN/SRTR 2013 Annual Data Report: Deceased organ donation. American Journal of Transplantation, 15(Suppl 2), 1–13. doi: 10.1111/ajt.13202.CrossRefPubMedGoogle Scholar
- 43.Itano, H., Zhang, W., Ritter, J. H., McCarthy, T. J., Mohanakumar, T., & Patterson, G. A. (2000). Adenovirus-mediated gene transfer of human interleukin 10 ameliorates reperfusion injury of rat lung isografts. The Journal of Thoracic and Cardiovascular Surgery, 120, 947–956. doi: 10.1067/mtc.2000.109240.CrossRefPubMedGoogle Scholar
- 44.Jirsch, D. W., Fisk, R. L., & Couves, C. M. (1970). Ex vivo evaluation of stored lungs. The Annals of Thoracic Surgery, 10, 163–168.CrossRefPubMedGoogle Scholar
- 45.Kaneda, H., Waddell, T. K., De Perrot, M., Bai, X. H., Gutierrez, C., Arenovich, T., Chaparro, C., Liu, M., & Keshavjee, S. (2006). Pre-implantation multiple cytokine mRNA expression analysis of donor lung grafts predicts survival after lung transplantation in humans. American Journal of Transplantation, 6, 544–551. doi: 10.1111/j.1600-6143.2005.01204.x.CrossRefPubMedGoogle Scholar
- 46.Kanekal, S., Plopper, C., Morin, D., & Buckpitt, A. (1990). Metabolic activation and bronchiolar Clara cell necrosis from naphthalene in the isolated perfused mouse lung. The Journal of Pharmacology and Experimental Therapeutics, 252, 428–437.PubMedGoogle Scholar
- 47.Kaplan, E., Diehl, J. T., Peterson, M. B., Somerville, K. H., Daly, B. D., Connolly, R. J., Cooper, A. G., Seiler, S. D., & Cleveland, R. J. (1990). Extended ex vivo preservation of the heart and lungs. Effects of acellular oxygen-carrying perfusates and indomethacin on the autoperfused working heart-lung preparation. The Journal of Thoracic and Cardiovascular Surgery, 100, 687–697. discussion 697–698.PubMedGoogle Scholar
- 48.Khalifé-Hocquemiller, T., Sage, E., Dorfmuller, P., Mussot, S., Le Houérou, D., Eddahibi, S., & Fadel, E. (2014). Exogenous surfactant attenuates lung injury from gastric-acid aspiration during ex vivo reconditioning in pigs. Transplantation, 97, 413–418. doi: 10.1097/01.TP.0000441320.10787.c5.CrossRefPubMedGoogle Scholar
- 49.Kondo, T., Chen, F., Ohsumi, A., Hijiya, K., Motoyama, H., Sowa, T., Ohata, K., Takahashi, M., Yamada, T., Sato, M., Aoyama, A., & Date, H. (2015). β2-Adrenoreceptor agonist inhalation during ex vivo lung perfusion attenuates lung injury. The Annals of Thoracic Surgery, 100, 480–486. doi: 10.1016/j.athoracsur.2015.02.136.CrossRefPubMedGoogle Scholar
- 50.Kraft, S. A., Fujishima, S., McGuire, G. P., Thompson, J. S., Raffin, T. A., & Pearl, R. G. (1995). Effect of blood and albumin on pulmonary hypertension and edema in perfused rabbit lungs. Journal of Applied Physiology, 78, 499–504.CrossRefPubMedGoogle Scholar
- 51.Kramer, G., Erdal, H., Mertens, H. J. M. M., Nap, M., Mauermann, J., Steiner, G., Marberger, M., Bivén, K., Shoshan, M. C., & Linder, S. (2004). Differentiation between cell death modes using measurements of different soluble forms of extracellular cytokeratin 18. Cancer Research, 64, 1751–1756.CrossRefPubMedGoogle Scholar
- 52.Kubes, P., Suzuki, M., & Granger, D. N. (1991). Nitric oxide: An endogenous modulator of leukocyte adhesion. Proceedings of the National Academy of Sciences of the United States of America, 88, 4651–4655.CrossRefPubMedPubMedCentralGoogle Scholar
- 53.Langleben, D., DeMarchie, M., Laporta, D., Spanier, A. H., Schlesinger, R. D., & Stewart, D. J. (1993). Endothelin-1 in acute lung injury and the adult respiratory distress syndrome. The American Review of Respiratory Disease, 148, 1646–1650. doi: 10.1164/ajrccm/148.6_Pt_1.1646.CrossRefPubMedGoogle Scholar
- 54.Laumonier, T., Walpen, A. J., Maurus, C. F., Mohacsi, P. J., Matozan, K. M., Korchagina, E. Y., Bovin, N. V., Vanhove, B., Seebach, J. D., & Rieben, R. (2003). Dextran sulfate acts as an endothelial cell protectant and inhibits human complement and natural killer cell-mediated cytotoxicity against porcine cells. Transplantation, 76, 838–843. doi: 10.1097/01.TP.0000078898.28399.0A.CrossRefPubMedGoogle Scholar
- 55.Lee, J. W., Fang, X., Gupta, N., Serikov, V., & Matthay, M. A. (2009). Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proceedings of the National Academy of Sciences of the United States of America, 106, 16357–16362. doi: 10.1073/pnas.0907996106.CrossRefPubMedPubMedCentralGoogle Scholar
- 56.Lee, J. W., Fang, X., Krasnodembskaya, A., Howard, J. P., & Matthay, M. A. (2011). Concise review: Mesenchymal stem cells for acute lung injury: Role of paracrine soluble factors. Stem Cells, 29, 913–919. doi: 10.1002/stem.643.CrossRefPubMedPubMedCentralGoogle Scholar
- 57.Lee, J. W., Krasnodembskaya, A., McKenna, D. H., Song, Y., Abbott, J., & Matthay, M. A. (2013). Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. American Journal of Respiratory and Critical Care Medicine, 187, 751–760. doi: 10.1164/rccm.201206-0990OC.CrossRefPubMedPubMedCentralGoogle Scholar
- 58.Levings, M. K., & Roncarolo, M. G. (2000). T-regulatory 1 cells: A novel subset of CD4 T cells with immunoregulatory properties. The Journal of Allergy and Clinical Immunology, 106, S109–S112.CrossRefPubMedGoogle Scholar
- 59.Linacre, V., Cypel, M., Machuca, T. N., Nakajima, D., Hashimoto, K., Zamel, R., Chen, M., Iskender, I., Waddell, T. K., Liu, M., & Keshavjee, S. (2014). A positive left atrial pressure is important during ex vivo lung perfusion. The Journal of Heart and Lung Transplantation, 33, 27–28.CrossRefGoogle Scholar
- 60.Lindbergh, C. A. (1935). An apparatus for the culture of whole organs. The Journal of Experimental Medicine, 62, 409–431. doi: 10.1084/jem.62.3.409.CrossRefPubMedPubMedCentralGoogle Scholar
- 61.Lu, G. M., Zhao, Y., Zhang, L. J., & Schoepf, U. J. (2012). Dual-energy CT of the lung. AJR. American Journal of Roentgenology, 199, S40–S53.CrossRefPubMedGoogle Scholar
- 62.Luc, J. G. Y., Bozso, S. J., Freed, D. H., & Nagendran, J. (2015). Successful repair of donation after circulatory death lungs with large pulmonary embolus using the lung organ care system for ex vivo thrombolysis and subsequent clinical transplantation. Transplantation, 99, e1–e2. doi: 10.1097/TP.0000000000000485.CrossRefPubMedGoogle Scholar
- 63.Machuca, T. N., Cypel, M., Yeung, J. C., Bonato, R., Zamel, R., Chen, M., Azad, S., Hsin, M. K., Saito, T., Guan, Z., Waddell, T. K., Liu, M., & Keshavjee, S. (2014). Protein expression profiling predicts graft performance in clinical ex vivo lung perfusion. Annals of Surgery. doi: 10.1097/SLA.0000000000000974.CrossRefPubMedGoogle Scholar
- 64.Machuca, T. N., Cypel, M., Zhao, Y., Grasemann, H., Tavasoli, F., Yeung, J. C., Bonato, R., Chen, M., Zamel, R., Chun, Y.-M., Guan, Z., de Perrot, M., Waddell, T. K., Liu, M., & Keshavjee, S. (2015). The role of the endothelin-1 pathway as a biomarker for donor lung assessment in clinical ex vivo lung perfusion. The Journal of Heart and Lung Transplantation, 34, 849–857. doi: 10.1016/j.healun.2015.01.003.CrossRefPubMedGoogle Scholar
- 65.Machuca, T. N., Hsin, M. K., Ott, H. C., Chen, M., Hwang, D. M., Cypel, M., Waddell, T. K., & Keshavjee, S. (2013). Injury-specific ex vivo treatment of the donor lung: Pulmonary thrombolysis followed by successful lung transplantation. American Journal of Respiratory and Critical Care Medicine, 188, 878–880. doi: 10.1164/rccm.201302-0368LE.CrossRefPubMedGoogle Scholar
- 66.Marik, P. E. (2001). Aspiration pneumonitis and aspiration pneumonia. The New England Journal of Medicine, 344, 665–671. doi: 10.1056/NEJM200103013440908.CrossRefPubMedGoogle Scholar
- 67.Martins, S., de Perrot, M., Imai, Y., Yamane, M., Quadri, S. M., Segall, L., Dutly, A., Sakiyama, S., Chaparro, A., Davidson, B. L., Waddell, T. K., Liu, M., & Keshavjee, S. (2004). Transbronchial administration of adenoviral-mediated interleukin-10 gene to the donor improves function in a pig lung transplant model. Gene Therapy, 11, 1786–1796. doi: 10.1038/sj.gt.3302357.CrossRefPubMedGoogle Scholar
- 68.Mathur, A., Baz, M., Staples, E. D., Bonnell, M., Speckman, J. M., Hess, P. J., Klodell, C. T., Knauf, D. G., Moldawer, L. L., & Beaver, T. M. (2006). Cytokine profile after lung transplantation: Correlation with allograft injury. The Annals of Thoracic Surgery, 81, 1844–1849.; discussion 1849–1850. doi: 10.1016/j.athoracsur.2005.11.053.CrossRefPubMedGoogle Scholar
- 69.Matthay, M. A., Thompson, B. T., Read, E. J., McKenna, D. H., Liu, K. D., Calfee, C. S., & Lee, J. W. (2010). Therapeutic potential of mesenchymal stem cells for severe acute lung injury. Chest, 138, 965–972. doi: 10.1378/chest.10-0518.CrossRefPubMedPubMedCentralGoogle Scholar
- 70.McAuley, D. F., Curley, G. F., Hamid, U. I., Laffey, J. G., Abbott, J., McKenna, D. H., Fang, X., Matthay, M. A., & Lee, J. W. (2014). Clinical grade allogeneic human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. American Journal of Physiology. Lung Cellular and Molecular Physiology, 306, L809–L815. doi: 10.1152/ajplung.00358.2013.CrossRefPubMedPubMedCentralGoogle Scholar
- 71.McAuley, D. F., Frank, J. A., Fang, X., & Matthay, M. A. (2004). Clinically relevant concentrations of beta2-adrenergic agonists stimulate maximal cyclic adenosine monophosphate-dependent airspace fluid clearance and decrease pulmonary edema in experimental acid-induced lung injury. Critical Care Medicine, 32, 1470–1476.CrossRefPubMedGoogle Scholar
- 72.Meers, C., Van Raemdonck, D., Verleden, G. M., Coosemans, W., Decaluwe, H., De Leyn, P., Nafteux, P., & Lerut, T. (2010). The number of lung transplants can be safely doubled using extended criteria donors; a single-center review. Transplant International, 23, 628–635. doi: 10.1111/j.1432-2277.2009.01033.x.CrossRefPubMedGoogle Scholar
- 73.Meers, C. M., De Wever, W., Verbeken, E., Mertens, V., Wauters, S., De Vleeschauwer, S. I., Vos, R., Vanaudenaerde, B. M., Verleden, G. M., & Van Raemdonck, D. E. M. (2011). A porcine model of acute lung injury by instillation of gastric fluid. The Journal of Surgical Research, 166, e195–e204. doi: 10.1016/j.jss.2010.10.015.CrossRefPubMedGoogle Scholar
- 74.Mitaka, C., Hirata, Y., Nagura, T., Tsunoda, Y., & Amaha, K. (1993). Circulating endothelin-1 concentrations in acute respiratory failure. Chest, 104, 476–480.CrossRefPubMedGoogle Scholar
- 75.Moore, K. W., de Waal, M. R., Coffman, R. L., & O’Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology, 19, 683–765. doi: 10.1146/annurev.immunol.19.1.683.CrossRefPubMedGoogle Scholar
- 76.Mordant, P., Nakajima, D., Kalaf, R., Iskender, I., Maahs, L., Behrens, P., Coutinho, R., Lyer, R., Davies, J. E., Cypel, M., Liu, M., Waddell, T. K., & Keshavjee, S. (2015). Ex vivo administration of human mesenchymal stem cells ameliorates injury in pig lungs through an increase in parenchymal VEGF and a decrease in circulating IL-8. The Journal of Heart and Lung Transplantation, 34, 267.CrossRefGoogle Scholar
- 77.Moreno, I., Vicente, R., Ramos, F., Vicente, J. L., & Barberá, M. (2007). Determination of interleukin-6 in lung transplantation: Association with primary graft dysfunction. Transplantation Proceedings, 39, 2425–2426. doi: 10.1016/j.transproceed.2007.07.056.CrossRefPubMedGoogle Scholar
- 78.Motoyama, H., Chen, F., Hijiya, K., Kondo, T., Ohsumi, A., Yamada, T., Sato, M., Aoyama, A., Bando, T., & Date, H. (2014). Plasmin administration during ex vivo lung perfusion ameliorates lung ischemia-reperfusion injury. The Journal of Heart and Lung Transplantation, 33, 1093–1099. doi: 10.1016/j.healun.2014.06.004.CrossRefPubMedGoogle Scholar
- 79.Mutlu, G. M., & Factor, P. (2008). Alveolar epithelial beta2-adrenergic receptors. American Journal of Respiratory Cell and Molecular Biology, 38, 127–134. doi: 10.1165/rcmb.2007-0198TR.CrossRefPubMedGoogle Scholar
- 80.Nakajima, D., Cypel, M., Bonato, R., Machuca, T. N., Iskender, I., Hashimoto, K., Linacre, V., Chen, M., Coutinho, R., Azad, S., Martinu, T., Waddell, T. K., Hwang, D. M., Husain, S., Liu, M., & Keshavjee, S. (2016). Ex vivo perfusion treatment of infection in human donor lungs. American Journal of Transplantation. doi: 10.1111/ajt.13562.CrossRefPubMedGoogle Scholar
- 81.Nakajima, D., Ohsumi, A., Iskender, I., Kalaf, R., Chen, M., Coutinho, R., Kanou, T., Maahs, L., Behrens, P., Sakamoto, J., Hsin, M. K., Azad, S., Waddell, T. K., Cypel, M., Liu, M., & Keshavjee, S. (2015). Lung lavage and surfactant administration for the ex vivo pre-transplant treatment of donor lungs injured due to gastric acid aspiration. The Journal of Heart and Lung Transplantation, 34, 92.CrossRefGoogle Scholar
- 82.Oto, T., Rabinov, M., Griffiths, A. P., Whitford, H., Levvey, B. J., Esmore, D. S., Williams, T. J., & Snell, G. I. (2005). Unexpected donor pulmonary embolism affects early outcomes after lung transplantation: A major mechanism of primary graft failure? The Journal of Thoracic and Cardiovascular Surgery, 130, 1446. doi: 10.1016/j.jtcvs.2005.07.025.CrossRefPubMedGoogle Scholar
- 83.Patel, S. A., Sherman, L., Munoz, J., & Rameshwar, P. (2008). Immunological properties of mesenchymal stem cells and clinical implications. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 56, 1–8. doi: 10.1007/s00005-008-0001-x.CrossRefGoogle Scholar
- 84.Peták, F., Habre, W., Hantos, Z., Sly, P. D., & Morel, D. R. (2002). Effects of pulmonary vascular pressures and flow on airway and parenchymal mechanics in isolated rat lungs. Journal of Applied Physiology, 92, 169–178.CrossRefPubMedGoogle Scholar
- 85.Porzecanski, I., & Bowton, D. L. (2006). Diagnosis and treatment of ventilator-associated pneumonia. Chest, 130, 597–604. doi: 10.1378/chest.130.2.597.CrossRefPubMedGoogle Scholar
- 86.Quadri, S. M., Segall, L., de Perrot, M., Han, B., Edwards, V., Jones, N., Waddell, T. K., Liu, M., & Keshavjee, S. (2005). Caspase inhibition improves ischemia-reperfusion injury after lung transplantation. American Journal of Transplantation, 5, 292–299. doi: 10.1111/j.1600-6143.2004.00701.x.CrossRefPubMedGoogle Scholar
- 87.Raghavendran, K., Nemzek, J., Napolitano, L. M., & Knight, P. R. (2011). Aspiration-induced lung injury. Critical Care Medicine, 39, 818–826. doi: 10.1097/CCM.0b013e31820a856b.CrossRefPubMedPubMedCentralGoogle Scholar
- 88.Remy-Jardin, M., Faivre, J. B., Pontana, F., Molinari, F., Tacelli, N., & Remy, J. (2014). Thoracic applications of dual energy. Seminars in Respiratory and Critical Care Medicine, 35, 64–73.CrossRefPubMedGoogle Scholar
- 89.Roncarolo, M. G., Bacchetta, R., Bordignon, C., Narula, S., & Levings, M. K. (2001). Type 1 T regulatory cells. Immunological Reviews, 182, 68–79.CrossRefPubMedGoogle Scholar
- 90.Ruiz, I., Gavaldà, J., Monforte, V., Len, O., Román, A., Bravo, C., Ferrer, A., Tenorio, L., Román, F., Maestre, J., Molina, I., Morell, F., & Pahissa, A. (2006). Donor-to-host transmission of bacterial and fungal infections in lung transplantation. American Journal of Transplantation, 6, 178–182. doi: 10.1111/j.1600-6143.2005.01145.x.CrossRefPubMedGoogle Scholar
- 91.Sage, E., Mussot, S., Trebbia, G., Puyo, P., Stern, M., Dartevelle, P., Chapelier, A., & Fischler, M. (2014). Lung transplantation from initially rejected donors after ex vivo lung reconditioning: The French experience. European Journal of Cardio-Thoracic Surgery, 46, 794–799. doi: 10.1093/ejcts/ezu245.CrossRefPubMedGoogle Scholar
- 92.Salama, M., Andrukhova, O., Hoda, M. A., Taghavi, S., Jaksch, P., Heinze, G., Klepetko, W., & Aharinejad, S. (2010). Concomitant endothelin-1 overexpression in lung transplant donors and recipients predicts primary graft dysfunction. American Journal of Transplantation, 10, 628–636. doi: 10.1111/j.1600-6143.2009.02957.x.CrossRefPubMedGoogle Scholar
- 93.Seeger, W., Schneider, U., Kreusler, B., von Witzleben, E., Walmrath, D., Grimminger, F., & Neppert, J. (1990). Reproduction of transfusion-related acute lung injury in an ex vivo lung model. Blood, 76, 1438–1444.PubMedGoogle Scholar
- 94.Steen, S., Sjöberg, T., Pierre, L., Liao, Q., Eriksson, L., & Algotsson, L. (2001). Transplantation of lungs from a non-heart-beating donor. Lancet, 357, 825–829. doi: 10.1016/S0140-6736(00)04195-7.CrossRefPubMedGoogle Scholar
- 95.Tikkanen, J. M., Cypel, M., Machuca, T. N., Azad, S., Binnie, M., Chow, C.-W., Chaparro, C., Hutcheon, M., Yasufuku, K., de Perrot, M., Pierre, A. F., Waddell, T. K., Keshavjee, S., & Singer, L. G. (2015). Functional outcomes and quality of life after normothermic ex vivo lung perfusion lung transplantation. The Journal of Heart and Lung Transplantation, 34, 547–556. doi: 10.1016/j.healun.2014.09.044.CrossRefPubMedGoogle Scholar
- 96.Vénéreau, E., Ceriotti, C., & Bianchi, M. E. (2015). DAMPs from cell death to new life. Frontiers in Immunology, 6, 422. doi: 10.3389/fimmu.2015.00422.CrossRefPubMedPubMedCentralGoogle Scholar
- 97.Wallinder, A., Ricksten, S.-E., Silverborn, M., Hansson, C., Riise, G. C., Liden, H., Jeppsson, A., & Dellgren, G. (2014). Early results in transplantation of initially rejected donor lungs after ex vivo lung perfusion: A case-control study. European Journal of Cardio-Thoracic Surgery, 45, 40–44.; discussion 44–45. doi: 10.1093/ejcts/ezt250.CrossRefPubMedGoogle Scholar
- 98.Warnecke, G., Moradiellos, J., Tudorache, I., Kühn, C., Avsar, M., Wiegmann, B., Sommer, W., Ius, F., Kunze, C., Gottlieb, J., Varela, A., & Haverich, A. (2012). Normothermic perfusion of donor lungs for preservation and assessment with the organ care system lung before bilateral transplantation: A pilot study of 12 patients. Lancet (London, England), 380, 1851–1858. doi: 10.1016/S0140-6736(12)61344-0.CrossRefGoogle Scholar
- 99.Whitson, B. A., & Black, S. M. (2014). Organ assessment and repair centers: The future of transplantation is near. World Journal of Transplantation, 4, 40–42. doi: 10.5500/wjt.v4.i2.40.CrossRefPubMedPubMedCentralGoogle Scholar
- 100.Wigfield, C. H., Cypel, M., Yeung, J., Waddell, T., Alex, C., Johnson, C., Keshavjee, S., & Love, R. B. (2012). Successful emergent lung transplantation after remote ex vivo perfusion optimization and transportation of donor lungs. American Journal of Transplantation, 12, 2838–2844. doi: 10.1111/j.1600-6143.2012.04175.x.CrossRefPubMedGoogle Scholar
- 101.Yeung, J. C., Wagnetz, D., Cypel, M., Rubacha, M., Koike, T., Chun, Y.-M., Hu, J., Waddell, T. K., Hwang, D. M., Liu, M., & Keshavjee, S. (2012). Ex vivo adenoviral vector gene delivery results in decreased vector-associated inflammation pre- and post-lung transplantation in the pig. Molecular Therapy, 20, 1204–1211. doi: 10.1038/mt.2012.57.CrossRefPubMedPubMedCentralGoogle Scholar
- 102.Yew Hsin, M. K., Iskander, I., Nakajima, D., Chen, M., Kim, H., Dos Santos, P. R., Sakamoto, J., Lee, J., Hashimoto, K., Harmantas, C., Hwang, D., Waddell, T., Liu, M., Keshavjee, S., & Cypel, M. (2015). Extension of donor lung preservation with hypothermic storage after normothermic ex vivo lung perfusion. The Journal of Heart and Lung Transplantation. doi: 10.1016/j.healun.2015.05.017.CrossRefPubMedGoogle Scholar
- 103.Zamel, R., Machuca, T. N., Yeung, J. C., Bonato, R., Bai, X.-H., Waddell, T. K., Liu, M., Cypel, M., & Keshavjee, S. (2013). Discovery of mRNA biomarkers predicting donor lung failure. The Journal of Heart and Lung Transplantation, 32, 45–46.CrossRefGoogle Scholar
- 104.Zeerleder, S., Mauron, T., Lämmle, B., & Wuillemin, W. A. (2002). Effect of low-molecular weight dextran sulfate on coagulation and platelet function tests. Thrombosis Research, 105, 441–446.CrossRefPubMedGoogle Scholar
- 105.Zych, B., Popov, A. F., Stavri, G., Bashford, A., Bahrami, T., Amrani, M., De Robertis, F., Carby, M., Marczin, N., Simon, A. R., & Redmond, K. C. (2012). Early outcomes of bilateral sequential single lung transplantation after ex-vivo lung evaluation and reconditioning. The Journal of Heart and Lung Transplantation, 31, 274–281. doi: 10.1016/j.healun.2011.10.008.CrossRefPubMedGoogle Scholar