Dynamic Graph Coloring

  • Luis Barba
  • Jean Cardinal
  • Matias Korman
  • Stefan Langerman
  • André van RenssenEmail author
  • Marcel Roeloffzen
  • Sander Verdonschot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10389)


In this paper we study the number of vertex recolorings that an algorithm needs to perform in order to maintain a proper coloring of a graph under insertion and deletion of vertices and edges. We present two algorithms that achieve different trade-offs between the number of recolorings and the number of colors used. For any \(d>0\), the first algorithm maintains a proper \(O(\mathcal {C} dN ^{1/d})\)-coloring while recoloring at most O(d) vertices per update, where \(\mathcal {C} \) and \(N \) are the maximum chromatic number and maximum number of vertices, respectively. The second algorithm reverses the trade-off, maintaining an \(O(\mathcal {C} d)\)-coloring with \(O(dN ^{1/d})\) recolorings per update. We also present a lower bound, showing that any algorithm that maintains a c-coloring of a 2-colorable graph on \(N \) vertices must recolor at least \(\varOmega (N ^\frac{2}{c(c-1)})\) vertices per update, for any constant \(c \ge 2\).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baswana, S., Gupta, M., Sen, S.: Fully dynamic maximal matching in \({O}(\log n)\) update time. SIAM J. on Comp. 44(1), 88–113 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baswana, S., Khurana, S., Sarkar, S.: Fully dynamic randomized algorithms for graph spanners. ACM Trans. on Alg. 8(4), 35 (2012)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Borowiecki, P., Sidorowicz, E.: Dynamic coloring of graphs. Fundamenta Informaticae 114(2), 105–128 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Coudert, O.: Exact coloring of real-life graphs is easy. In Proc. 34th Design Autom. Conf., pp. 121–126. ACM (1997)Google Scholar
  5. 5.
    Demetrescu, C., Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Atallah, M.J., Blanton, M. (eds.) Algorithms and Theory of Computation Handbook. Chapman & Hall/CRC (2010)Google Scholar
  6. 6.
    Demetrescu, C., Finocchi, I., Italiano, P.: Dynamic graphs. In: Mehta, D., Sahni, S. (eds.) Handbook on Data Structures and Applications, Computer and Information Science. CRC Press (2005)Google Scholar
  7. 7.
    Dutot, A., Guinand, F., Olivier, D., Pigné, Y.: On the decentralized dynamic graph-coloring problem. In: Proc. Worksh. Compl. Sys. and Self-Org. Mod. (2007)Google Scholar
  8. 8.
    Halldórsson, M.M.: Parallel and on-line graph coloring. J. Alg. 23(2), 265–280 (1997)Google Scholar
  9. 9.
    Halldórsson, M.M., Szegedy, M.: Lower bounds for on-line graph coloring. Theo. Comp. Sci. 130(1), 163–174 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Henzinger, M., Krinninger, S., Nanongkai, D.: A subquadratic-time algorithm for decremental single-source shortest paths. In Proc. 25th ACM-SIAM Symp. on Discr. Alg., pp. 1053–1072 (2014)Google Scholar
  11. 11.
    Holm, J., De Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kapron, B.M., King, V., Mountjoy, B.: Dynamic graph connectivity in polylogarithmic worst case time. In Proc. 24th ACM-SIAM Symp. on Discr. Alg., pp. 1131–1142 (2013)Google Scholar
  13. 13.
    Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)Google Scholar
  14. 14.
    Lovász, L., Saks, M.E., Trotter, W.T.: An on-line graph coloring algorithm with sublinear performance ratio. Discr. Math. 75(1–3), 319–325 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Marathe, M.V., Breu, H., Hunt III, H.B., Ravi, S.S., Rosenkrantz, D.J.: Simple heuristics for unit disk graphs. Networks 25(2), 59–68 (1995)Google Scholar
  16. 16.
    Ouerfelli, L., Bouziri, H.: Greedy algorithms for dynamic graph coloring. In: Proc. Int. Conf. on Comm., Comp. and Control App., pp. 1–5 (2011)Google Scholar
  17. 17.
    Preuveneers, D., Berbers, Y.: ACODYGRA: an agent algorithm for coloring dynamic graphs. In: Symb. Num. Alg. Sci. Comp., pp. 381–390 (2004)Google Scholar
  18. 18.
    Roditty, L., Zwick, U.: Improved dynamic reachability algorithms for directed graphs. In: Proc. 43rd IEEE Sym. Found. Comp. Sci., pp. 679–688 (2002)Google Scholar
  19. 19.
    Roditty, L., Zwick, U.: Dynamic approximate all-pairs shortest paths in undirected graphs. In: Proc. 45th IEEE Sym. Found. Comp. Sci., pp. 499–508 (2004)Google Scholar
  20. 20.
    Thorup, M.: Fully-dynamic min-cut. Combinatorica 27(1), 91–127 (2007)Google Scholar
  21. 21.
    Vishwanathan, S.: Randomized online graph coloring. J. Alg. 13(4), 657–669 (1992)Google Scholar
  22. 22.
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comp. 3, 103–128 (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Luis Barba
    • 1
  • Jean Cardinal
    • 2
  • Matias Korman
    • 3
  • Stefan Langerman
    • 2
  • André van Renssen
    • 4
    • 5
    Email author
  • Marcel Roeloffzen
    • 4
    • 5
  • Sander Verdonschot
    • 6
  1. 1.Dept. of Computer ScienceETH ZürichZürichSwitzerland
  2. 2.Départment d’InformatiqueUniversité Libre de BruxellesBrusselsBelgium
  3. 3.Tohoku UniversitySendaiJapan
  4. 4.National Institute of InformaticsTokyoJapan
  5. 5.JST, ERATO, Kawarabayashi Large Graph ProjectNational Institute of InformaticsTokyoJapan
  6. 6.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations