A Polynomial Kernel for Distance-Hereditary Vertex Deletion

  • Eun Jung Kim
  • O-Joung KwonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10389)


A graph is distance-hereditary if for any pair of vertices, their distance in every connected induced subgraph containing both vertices is the same as their distance in the original graph. The Distance-Hereditary Vertex Deletion problem asks, given a graph G on n vertices and an integer k, whether there is a set S of at most k vertices in G such that \(G-S\) is distance-hereditary. This problem is important due to its connection to the graph parameter rank-width [19]; distance-hereditary graphs are exactly the graphs of rank-width at most 1. Eiben, Ganian, and Kwon (MFCS’ 16) proved that Distance-Hereditary Vertex Deletion can be solved in time \(2^{\mathcal {O}(k)}n^{\mathcal {O}(1)}\), and asked whether it admits a polynomial kernelization. We show that this problem admits a polynomial kernel, answering this question positively. For this, we use a similar idea for obtaining an approximate solution for Chordal Vertex Deletion due to Jansen and Pilipczuk (SODA’ 17) to obtain an approximate solution with \(\mathcal {O}(k^3\log n)\) vertices when the problem is a Yes-instance, and we exploit the structure of split decompositions of distance-hereditary graphs to reduce the total size.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, A., Lokshtanov, D., Misra, P., Saurabh, S., Zehavi, M.: Feedback vertex set inspired kernel for chordal vertex deletion. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16–19, pp. 1383–1398 (2017)Google Scholar
  2. 2.
    Bandelt, H.J., Mulder, H.M.: Distance-hereditary graphs. J. Combin. Theory Ser. B 41(2), 182–208 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bouchet, A.: Transforming trees by successive local complementations. J. Graph Theory 12(2), 195–207 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. 101(1–3), 77–114 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cunningham, W.H., Edmonds, J.: A combinatorial decomposition theory. Canad. J. Math. 32(3), 734–765 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dahlhaus, E.: Parallel algorithms for hierarchical clustering, and applications to split decomposition and parity graph recognition. Journal of Algorithms 36(2), 205–240 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Diestel, R.: Graph Theory. No. 173 in Graduate Texts in Mathematics, 3rd edn. Springer (2005)Google Scholar
  9. 9.
    Eiben, E., Ganian, R., Kwon, O.: A single-exponential fixed-parameter algorithm for distance-hereditary vertex deletion. In: Faliszewski, P., Muscholl, A., Niedermeier, R. (eds.) MFCS 2016, vol. 58, pp. 34:1–34:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016)Google Scholar
  10. 10.
    Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algorithms for minimum weight vertex separators. SIAM J. Comput. 38(2), 629–657 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-Deletion: approximation, kernelization and optimal FPT algorithms. In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science–FOCS 2012, pp. 470–479. IEEE Computer Soc., Los Alamitos (2012)Google Scholar
  12. 12.
    Giannopoulou, Archontia C., Jansen, Bart M.P., Lokshtanov, Daniel, Saurabh, Saket: Uniform kernelization complexity of hitting forbidden minors. In: Halldórsson, Magnús M., Iwama, Kazuo, Kobayashi, Naoki, Speckmann, Bettina (eds.) ICALP 2015. LNCS, vol. 9134, pp. 629–641. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-47672-7_51 CrossRefGoogle Scholar
  13. 13.
    Gioan, E., Paul, C.: Split decomposition and graph-labelled trees: characterizations and fully dynamic algorithms for totally decomposable graphs. Discrete Appl. Math. 160(6), 708–733 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gupta, A.: Improved results for directed multicut. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, January 12–14, 2003, Baltimore, Maryland, USA, pp. 454–455 (2003)Google Scholar
  15. 15.
    Jansen, B.M.P., Pilipczuk, M.: Approximation and kernelization for chordal vertex deletion. In: 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, January 16–19, 2017, Barcelona, Spain (2017). (to appear)Google Scholar
  16. 16.
    Kanté, M.M., Kim, E.J., Kwon, O., Paul, C.: An fpt algorithm and a polynomial kernel for linear rankwidth-1 vertex deletion. Algorithmica 1–30 (2016)Google Scholar
  17. 17.
    Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.: Linear kernels and single-exponential algorithms via protrusion decompositions. ACM Trans. Algorithms 12(2), Art. 21, 41 (2016)Google Scholar
  18. 18.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Oum, S.: Rank-width and vertex-minors. J. Combin. Theory Ser. B 95(1), 79–100 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CNRS-Université Paris-Dauphine, Place du Marechal de Lattre de TassignyParis Cedex 16France
  2. 2.Logic and SemanticsTU BerlinBerlinGermany

Personalised recommendations