Posimodular Function Optimization

  • Magnús M. Halldórsson
  • Toshimasa Ishii
  • Kazuhisa Makino
  • Kenjiro Takazawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10389)

Abstract

A function Open image in new window on a finite set V is posimodular if \(f(X)+f(Y) \ge f(X\setminus Y)+f(Y\setminus X)\), for all \(X,Y\subseteq V\). Posimodular functions often arise in combinatorial optimization such as undirected cut functions. We consider the problem of finding a nonempty subset X minimizing f(X), when the posimodular function f is given by oracle access.

We show that posimodular function minimization requires exponential time, contrasting with the polynomial solvability of submodular function minimization that forms another generalization of cut functions. On the other hand, the problem is fixed-parameter tractable in terms of the size of the image (or range) of f.

In more detail, we show that \(\varOmega (2^{0.3219n} T_f)\) time is necessary and \(O(2^{0.92n}T_f)\) sufficient, where \(T_f\) denotes the time for one function evaluation. When the image of f is \(D=\{0,1,\ldots ,d\}\), \(O(2^{1.271d}nT_f)\) time is sufficient and \(\varOmega (2^{0.1609d}T_f)\) necessary. We can also generate all sets minimizing f in time \(2^{O(d)} n^2 T_f\).

Finally, we also consider the problem of maximizing a given posimodular function, showing that it requires at least \(2^{n-1}T_f\) time in general, while it has time complexity \(\varTheta (n^{d-1}T_f)\) when \(D=\{0,1,\ldots , d\}\) is the image of f, for integer d.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arata, K., Iwata, S., Makino, K., Fujishige, S.: Locating sources to meet flow demands in undirected networks. Journal of Algorithms 42, 54–68 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chekuri, C., Ene, A.: Approximation algorithms for submodular multiway partition. In: IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 807–816 (2011)Google Scholar
  3. 3.
  4. 4.
    Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40, 1133–1153 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Frank, A.: Augmenting graphs to meet edge-connectivity requirements. SIAM Journal on Discrete Mathematics 5(1), 25–53 (1992)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Fujishige, S.: A laminarity property of the polyhedron described by a weakly posi-modular set function. Discrete Applied Mathematics 100(1–2), 123–126 (2000)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ishii, T., Makino, K.: Posi-modular systems with modulotone requirements under permutation constraints. Discrete Mathematics, Algorithms and Applications 2(1), 61–76 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ito, H., Makino, K., Arata, K., Honami, S., Itatsu, Y., Fujishige, S.: Source location problem with flow requirements in directed networks. Optimization Methods and Software 18, 427–435 (2003)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Lawler, E.L.: Cutsets and partitions of hypergraphs. Networks 3(3), 275–285 (1973)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lokshtanov, D., Marx, D.: Clustering with local restrictions. Information and Computation 222, 278–292 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Nagamochi, H.: Graph algorithms for network connectivity problems. Journal of the Operations Research Society of Japan 47(4), 199–223 (2004)MathSciNetMATHGoogle Scholar
  12. 12.
    Nagamochi, H.: Minimum degree orderings. Algorithmica 56(1), 17–34 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Nagamochi, H., Ibaraki, T.: A note on minimizing submodular functions. Inf. Process. Lett. 67(5), 239–244 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Nagamochi, H., Ibaraki, T.: Polyhedral structure of submodular and posi-modular systems. Discrete Applied Mathematics 107(1–3), 165–189 (2000)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Nagamochi, H., Shiraki, T., Ibaraki, T.: Augmenting a submodular and posi-modular set function by a multigraph. Journal of Combinatorial Optimization 5(2), 175–212 (2001)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Orlin, J.: A faster strongly polynomial time algorithm for submodular function minimization. Mathematical Programming 118(2), 237–251 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Sakashita, M., Makino, K., Nagamochi, H., Fujishige, S.: Minimum transversals in posi-modular systems. SIAM Journal on Discrete Mathematics 23, 858–871 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Svitkina, Z., Tardos, É.: Min-max multiway cut. In: Approximation, randomization, and combinatorial optimization, pp. 207–218 (2004)Google Scholar
  19. 19.
    Tamura, H., Sugawara, H., Sengoku, M., Shinoda, S.: Plural cover problem on undirected flow networks. IEICE Transactions J81–A, 863–869 (1998). (in Japanese)Google Scholar
  20. 20.
    van den Heuvel, J., Johnson, M.: The external network problem with edge- or arc-connectivity requirements. In: López-Ortiz, A., Hamel, A.M. (eds.) CAAN 2004. LNCS, vol. 3405, pp. 114–126. Springer, Heidelberg (2005). doi:10.1007/11527954_11 CrossRefGoogle Scholar
  21. 21.
    Watanabe, T., Nakamura, A.: Edge-connectivity augmentation problems. Journal of Computer System Sciences 35, 96–144 (1987)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Magnús M. Halldórsson
    • 1
  • Toshimasa Ishii
    • 2
  • Kazuhisa Makino
    • 3
  • Kenjiro Takazawa
    • 4
  1. 1.ICE-TCS, School of Computer ScienceReykjavik UniversityReykjavikIceland
  2. 2.Graduate School of EconomicsHokkaido UniversitySapporoJapan
  3. 3.Research Institute for Mathematical SciencesKyoto UniversityKyotoJapan
  4. 4.Faculty of Science and EngineeringHosei UniversityFujimiJapan

Personalised recommendations