Delta-Fast Tries: Local Searches in Bounded Universes with Linear Space

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10389)

Abstract

Let \(w \in {\mathbb {N}}\) and \(U = \{0, 1, \dots , 2^w-1\}\) be a bounded universe of w-bit integers. We present a dynamic data structure for predecessor searching in U. Our structure needs \(O(\log \log \varDelta )\) time for queries and \(O(\log \log \varDelta )\) expected time for updates, where \(\varDelta \) is the difference between the query element and its nearest neighbor in the structure. Our data structure requires linear space. This improves a result by Bose et al. [CGTA, 46(2), pp. 181–189].

The structure can be applied for answering approximate nearest neighbor queries in low dimensions and for dominance queries on a grid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belazzougui, D., Boldi, P., Vigna, S.: Dynamic Z-fast tries. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 159–172. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16321-0_15 CrossRefGoogle Scholar
  2. 2.
    Belazzougui, D., Boldi, P., Vigna, S.: Predecessor search with distance-sensitive query time (2012). arXiv:1209.5441
  3. 3.
    Bose, P., Douïeb, K., Dujmovic, V., Howat, J., Morin, P.: Fast local searches and updates in bounded universes. Comput. Geom. Theory Appl. 46(2), 181–189 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chan, T.M.: Closest-point problems simplified on the RAM. In: Proc. 13th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pp. 472–473 (2002)Google Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 3rd edn. MIT Press (2009)Google Scholar
  6. 6.
    Demaine, E.D., Harmon, D., Iacono, J., Pǎtraşcu, M.: Dynamic optimality – almost. SIAM J. Comput. 37(1), 240–251 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Demaine, E.D., Heide, F.M., Pagh, R., Pǎtraşcu, M.: De dictionariis dynamicis pauco spatio utentibus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 349–361. Springer, Heidelberg (2006). doi:10.1007/11682462_34 CrossRefGoogle Scholar
  8. 8.
    Ehrhardt, M.: An In-Depth Analysis of Data Structures Derived from van-Emde-Boas-Trees. Master’s thesis, Freie Universität Berlin (2015) http://www.mi.fu-berlin.de/inf/groups/ag-ti/theses/download/Ehrhardt15.pdf
  9. 9.
    van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient priority queue. Math. Systems Theory 10(2), 99–127 (1976)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Inform. Process. Lett. 6(3), 80–82 (1977)CrossRefMATHGoogle Scholar
  11. 11.
    Har-Peled, S.: Geometric approximation algorithms, Mathematical Surveys and Monographs, vol. 173. American Mathematical Society (2011)Google Scholar
  12. 12.
    Knuth, D.E.: The art of computer programming. Sorting and searching, vol. 3, 2nd edn. Addison-Wesley (1998)Google Scholar
  13. 13.
    Overmars, M.H.: Efficient data structures for range searching on a grid. J. Algorithms 9(2), 254–275 (1988)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Preparata, F.P., Shamos, M.I.: Computational geometry. An introduction. Springer Verlag (1985)Google Scholar
  15. 15.
    Pǎtraşcu, M.: vEB space: Method 4 (2010). http://infoweekly.blogspot.de/2010/09/veb-space-method-4.html
  16. 16.
    Ružić, M.: Making deterministic signatures quickly. ACM Transactions on Algorithms 5(3), 26:1–26:26 (2009)MathSciNetMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institut für InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations