Darwinian Evolution of the Human Body and Culture

  • Jerzy Dzik
Part of the Issues in Science and Religion: Publications of the European Society for the Study of Science and Theology book series (ESSSAT, volume 4)


The fossil record of the anatomical evolution of the human lineage shows that it was very slow and gradual. While changing their habitat from a primeval forest to the unpredictable environment of savannah, our animal ancestors had to change their ecological strategy. As a result, fertility increased, childcare was prolonged, and sedentary family life developed. A hormonal mechanism of filial and sexual imprinting supported these changes by strengthening emotional family ties. This means that such aspects of human biology as sexual behaviour, family love, herd instinct, and feeling of ownership are inherited after our animal ancestors and have a very ancient evolutionary history. The human brain size increase does not necessarily express the development of intellectual abilities but is rather a thermoregulatory mechanism connected with persistence hunting. The intellectual potential of the large brain emerged long after its evolution had been completed. A powerful tool for scientific interpretations of this paradox is offered by the application of the Darwinian way of reasoning to the evolution of human culture, resulting in the selection of ideas. Cultural evolution is cumulative, and some institutions invented by this process may partially liberate humans from the limitations of their biological heritage.


Behaviour Ethics Hominin Imprinting Phylogeny 


  1. Adcock, G. J., Dennis, E. S., Easteal, S., Huttley, G. A., Jermiin, L. S., Peacock, W. J., & Thorne, A. (2001). Mitochondrial DNA sequences in ancient Australians: Implications for modern human origins. Proceedings of the National Academy of Sciences, USA, 98, 537–542.CrossRefGoogle Scholar
  2. Arsuaga, J. L., Carretero, J.-M., Lorenzo, C., Gómez-Olivencia, A., Pablos, A., Rodríguez, L., García-González, R., Bonmatí, A., Quam, R. M., Pantoja-Pérez, A., Martínez, I., Aranburu, A., Gracia-Téllez, A., Poza-Rey, E., Sala, N., García, N., Alcázar de Velasco, A., Cuenca-Bescós, G., Bermúdez de Castro, J. M., & Carbonell, E. (2015). Postcranial morphology of the middle Pleistocene humans from Sima de los Huesos, Spain. Proceedings of the National Academy of Sciences, USA, 112, 11524–11529.CrossRefGoogle Scholar
  3. Betteridge, K. J. (1981). An historical look at embryo transfer. Reproduction, 62, 1–13.CrossRefGoogle Scholar
  4. Bolhuis, J. J. (1991). Mechanisms of avian imprinting: A review. Biological Reviews of the Cambridge Philosophical Society, 66, 303–345.CrossRefGoogle Scholar
  5. Bowler, J. M., Johnston, H., Olley, J. M., Prescott, J. R., Roberts, R. G., Shawcross, W., & Spooner, N. A. (2003). New ages for human occupation and climatic change at Lake Mungo, Australia. Nature, 421, 837–840.CrossRefGoogle Scholar
  6. Bramble, D. M., & Lieberman, D. E. (2004). Endurance running and the evolution of Homo. Nature, 432, 345–352.CrossRefGoogle Scholar
  7. Büttner, D. (1982). Biometrie und Evolution der Viviparus-Arten (Mollusca, Gastropoda) aus der Plio-Pleistozän-Abfolge von Ost-Kos (Dodekanes, Griechenland). Berliner geowissenschafliche Abhandlungen, A42, 1–79.Google Scholar
  8. Callaway, E. (2015). Steppe migration rekindles debate on language origin: Eurasian region gains ground as birthplace of Indo-European tongues. Nature, 518, 284–285.CrossRefGoogle Scholar
  9. Coria-Avila, G. A. (2012). The role of conditioning on heterosexual and homosexual partner preferences in rats. Socioaffective Neuroscience & Psychology, 2, 17340. doi: 10.3402/snp.v2i0.17340.CrossRefGoogle Scholar
  10. Corner, G. W. (1955). The observed embryology of the human single-ovum twins and other multiple births. American Journal of Obstetrics and Gynecology, 70, 933–951.CrossRefGoogle Scholar
  11. Crawford, M. (1992). The Roman Republic (2nd ed.). London: Fontana Press.Google Scholar
  12. De Dreu, C. K., Greer, L. L., Van Kleef, G. A., Shalvi, S., & Handgraaf, M. J. (2011). Oxytocin promotes human ethnocentrism. Proceedings of the National Academy of Sciences of the USA, 108, 1262–1266.CrossRefGoogle Scholar
  13. Dzik, J. (2000). The origin of the mineral skeleton in chordates. Evolutionary Biology, 31, 105–154.Google Scholar
  14. Dzik, J. (2005). The chronophyletic approach: Stratophenetics facing an incomplete fossil record. Special Papers in Palaeontology, 73, 159–183.Google Scholar
  15. Dzik, J. (2006). The Famennian “Golden Age” of conodonts and ammonoids in the Polish part of the Variscan sea. Palaeontologia Polonica, 63, 1–359.Google Scholar
  16. Dzik, J. (2008). Evolution of morphogenesis in 360-million-year-old conodont chordates calibrated in days. Evolution and Development, 10, 769–777.CrossRefGoogle Scholar
  17. Emmons, S. W., & Lipton, J. (2003). Genetic basis of male sexual behavior. Journal of Neurobiology, 54, 93–110.CrossRefGoogle Scholar
  18. Enders, A. C. (2002). Implantation in the nine-banded armadillo: How does a single blastocyst form four embryos? Placenta, 23, 71–85.CrossRefGoogle Scholar
  19. Fiałkowski, K. R. (1978). Early hominid brain evolution and heat stress: A hypothesis. Studies in Physical Anthropology, 4, 87–92.Google Scholar
  20. Fiałkowski, K. R. (1986). A mechanism for the origin of the human brain: A hypothesis. Current Anthropology, 27, 288–290.CrossRefGoogle Scholar
  21. Gardner, R. L. (2014). The timing of monozygotic twinning: A pro-life challenge to conventional scientific wisdom. Reproductive Biomedicine Online, 28, 276–278.CrossRefGoogle Scholar
  22. Gruss, L. T., & Schmitt, D. (2015). The evolution of the human pelvis: Changing adaptations to bipedalism, obstetrics and thermoregulation. Philosophical Transactions of the Royal Society B, 370, 20140063.CrossRefGoogle Scholar
  23. Gwee, P. C., Amemiya, C. T., Brenner, S., & Venkatesh, B. (2008). Sequence and organization of coelacanth neurohypophysial hormone genes: Evolutionary history of the vertebrate neurohypophysial hormone gene locus. BMC Evolutionary Biology, 8, 93.CrossRefGoogle Scholar
  24. Heinrichs, M., von Dawans, B., & Domes, G. (2009). Oxytocin, vasopressin, and human social behavior. Frontiers in Neuroendocrinology, 30, 548–557.CrossRefGoogle Scholar
  25. Henneberg, M. (2006). The rate of human morphological microevolution and taxonomic diversity of hominids. Studies in Historical Anthropology, 4, 49–59.Google Scholar
  26. House, M. (1989). Geology of the dorset coast. London: The Geologists’ Association.Google Scholar
  27. Jędruch, J. (1982). Constitutions, elections and legislatures of Poland, 1493–1977. A guide to their history. Washington, DC: University Press of America.Google Scholar
  28. Joordens, J. C. A., d’Errico, F., Wesselingh, F. P., Munro, S., de Vos, J., Wallinga, J., Ankjćrgaard, C., Reimann, T., Wijbrans, J. R., Kuiper, K. F., Mücher, H. J., Coqueugniot, H., Prié, V., Joosten, I., van Os, B., Schulp, A. S., Panuel, M., van der Haas, V., Lustenhouwer, W., Reijmer, J. J. G., & Roebroeks, W. (2015). Homo erectus at Trinil on Java used shells for tool production and engraving. Nature, 518, 228–231.CrossRefGoogle Scholar
  29. Kelly, D. A. (2002). The functional morphology of penile erection: Tissue designs for increasing and maintaining stiffness. Integrative and Comparative Biology, 42, 216–221.CrossRefGoogle Scholar
  30. Leakey, M. D. (1979). Footprints in the ashes of time. National Geographic, 155, 446–457.Google Scholar
  31. Lepre, C. J., & Kent, D. V. (2015). Chronostratigraphy of KNM-ER 3733 and other Area 104 hominins from Koobi Fora. Journal of Human Evolution, 86, 99–111.CrossRefGoogle Scholar
  32. Lepre, C. J., Roche, H., Kent, D. V., Harmand, S., Quinn, R. L., Brugal, J. P., Texier, P. J., Lenoble, A., & Feibel, C. S. (2011). An earlier origin for the Acheulian. Nature, 477, 82–85.CrossRefGoogle Scholar
  33. Lister, A. M., & Sher, A. V. (2001). The origin and evolution of the woolly mammoth. Science, 294, 1094–1097.CrossRefGoogle Scholar
  34. Lordkipanidze, D., Ponce de León, M. S., Margvelashvili, A., Rak, Y., Rightmire, G. P., Vekua, A., & Zollikofer, C. P. E. (2013). A complete skull from Dmanisi, Georgia, and the evolutionary biology of early Homo. Science, 342, 326–331.CrossRefGoogle Scholar
  35. Lovejoy, C. O. (1981). The origin of man. Science, 211, 341–350.CrossRefGoogle Scholar
  36. Matzke, N. (2006, October 9). Fun with hominin brain size as a percentage of body mass, Panda’s Thumb, Access 5 May 2016.
  37. Nitecki, M. H., & Nitecki, D. V. (Eds.). (1993). Evolutionary ethics. Albany: State University of New York Press.Google Scholar
  38. Popper, K. R. (1957). The poverty of historicism. New York: Harper Torchbooks.Google Scholar
  39. Popper, K. R. (1972). Objective knowledge: An evolutionary approach (Revised Edition). Oxford: Oxford University Press.Google Scholar
  40. Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud, G., Sudmant, P. H., de Filippo, C., Li, H., Mallick, S., Dannemann, M., Fu, Q., Kircher, M., Kuhlwilm, M., Lachmann, M., Meyer, M., Ongyerth, M., Siebauer, M., Theunert, C., Tandon, A., Moorjani, P., Pickrell, J., Mullikin, J. C., Vohr, S. H., Green, R. E., Hellmann, I., Johnson, P. L. F., Blanche, H., Cann, H., Kitzman, J. O., Shendure, J., Eichler, E. E., Lein, E. S., Bakken, T. E., Golovanova, L. V., Doronichev, V. B., Shunkov, M. V., Derevianko, A. P., Viola, B., Slatkin, M., Reich, D., Kelso, J., & Pääbo, S. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505, 43–49.CrossRefGoogle Scholar
  41. Schrödinger, E. (1944). What is life?: The physical aspect of the living cell. Cambridge: Cambridge University Press.Google Scholar
  42. Schultz, A. H. (1969). The life of primates. London: Weidenfeld and Nicolson.Google Scholar
  43. Simpson, J. G. (1940). Types in modern taxonomy. American Journal of Science, 238, 413–431.CrossRefGoogle Scholar
  44. Stearn, W. T. (1959). The background of Linnaeus’s contributions to the nomenclature and methods of systematic biology. Systematic Zoology, 8, 4–22.CrossRefGoogle Scholar
  45. Tallinen, T., Chung, J. Y., Rousseau, F., Girard, N., Lefèvre, J., & Mahadevan, L. (2016). On the growth and form of cortical convolutions. Nature Physics, 12, 588–593. doi: 10.1038/nphys3632.CrossRefGoogle Scholar
  46. Tarkowski, A. K. (1961). Mouse chimaeras developed from fused eggs. Nature, 190, 857–860.CrossRefGoogle Scholar
  47. Taylor, L. R. (1990). Roman voting assemblies from the Hannibal War to the Dictatorship of Caesar. Ann Arbor: The University of Michigan Press.Google Scholar
  48. Thorley, J. (1996). Athenian democracy. London: Routledge.Google Scholar
  49. Wächtershäuser, G. (1992). Groundworks for an evolutionary biochemistry: The Iron-Sulphur World. Progress in Biophysics and Molecular Biology, 58, 85–202.Google Scholar
  50. White, T. D., Asfaw, B., Beyene, Y., Haile-Selassie, Y., Lovejoy, C. O., Suwa, G., & WoldeGabriel, G. (2009). Ardipithecus ramidus and the paleobiology of early hominids. Science, 326, 75–86.Google Scholar
  51. Willmann, R. (1978). Die Formenreihen der pliozanen Süßwassergastropoden von Kos (Agäis) und ihre Erforschungsgeschichte. Natur und Museum, 108, 230–237.Google Scholar
  52. Winslow, J. T., Hastings, N., Carter, C. S., Harbaugh, C. R., & Insel, T. R. (1993). A role for central vasopressin in pair bonding in monogamous prairie voles. Nature, 365, 545–548.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Faculty of Biology, Centre of Biological and Chemical Sciences, University of Warsaw and Institute of Paleobiology, Polish Academy of SciencesWarszawaPoland

Personalised recommendations