Acute Coronary Syndrome in Patients with Cancer

  • Ezequiel Munoz
  • Dana Elena Giza
  • Ricardo Bellera
  • Cezar IliescuEmail author


Therapeutic management of the cancer patients with symptoms of acute coronary syndrome has to be tailored to patient’s comorbidities while balancing potential risks of invasive revascularization. Careful selection of patients with ischemia-inducing stenosis necessitating cardiac catheterization is required to avoid hazardous complications in cancer patients with good prognosis. In general in patients with acute coronary syndrome, an early invasive strategy (coronary angiography and percutaneous coronary intervention or coronary artery bypass graft) is superior to a conservative strategy of optimum medical treatment alone. Intraprocedural tools for lesion assessment (intravascular ultrasonography, optical coherence tomography) allow a better characterization of the luminal processes and assessment of the hemodynamic impact of the lesion. A fractional flow reserve of >0.75 permits postponing stent placement and prompt continuation on anticancer therapy with no increased mortality risk. Special considerations have to be made in respect to primary or acquired thrombocytopenia, the increased propensity to thrombosis associated with cancer as a pro-inflammatory state, and the potential drug interactions. The use of percutaneous coronary angiography with either bare metal stents or drug eluting stents requires combined antiplatelet therapy (aspirin and P2Y12 inhibitors) to prevent early stent thrombosis. Significant collaborative efforts between cardiologists and hematologists/oncologists is of prime importance in order to optimize the care of oncology patients and increase overall survival.


Coronary artery disease (CAD) Cancer Thrombocytopenia Percutaneous coronary intervention (PCI) Fractional flow reserve (FFR) Intravascular ultrasound (IVUS) Optical coherence tomography (OCT) Coronary artery bypass graft (CABG) Cardiotoxicity Takotsubo syndrome 



Acute coronary syndrome


Bare metal stents


Coronary artery bypass graft surgery


Coronary artery disease


Dual antiplatelet therapy (aspirin and a thienopyridine)


Drug eluting stents


Fractional flow reserve


Intravascular ultrasonography


Non ST elevation myocardial infarction


Percutaneous coronary intervention


Plain balloon angioplasty


Unstable angina


  1. 1.
    Whitlock MC, Yeboah J, Burke GL, Chen H, Klepin HD, Hundley WG. Cancer and its association with the development of coronary artery calcification: an assessment from the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2015;4(11).CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Iliescu CA, Grines CL, Herrmann J, et al. SCAI expert consensus statement: evaluation, management, and special considerations of cardio-oncology patients in the cardiac catheterization laboratory (endorsed by the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencionista). Catheter Cardiovasc Interv. 2016;87(5):E202–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Yusuf SW, Daraban N, Abbasi N, Lei X, Durand JB, Daher IN. Treatment and outcomes of acute coronary syndrome in the cancer population. Clin Cardiol. 2012;35(7):443–50.CrossRefPubMedGoogle Scholar
  4. 4.
    Kurisu S, Iwasaki T, Ishibashi K, Mitsuba N, Dohi Y, Kihara Y. Comparison of treatment and outcome of acute myocardial infarction between cancer patients and non-cancer patients. Int J Cardiol. 2013;167(5):2335–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Pratap P, Gupta S, Berlowitz M. Routine invasive versus conservative management strategies in acute coronary syndrome: time for a “hybrid” approach. J Cardiovasc Transl Res. 2012;5(1):30–40.CrossRefPubMedGoogle Scholar
  6. 6.
    Tegn N, Abdelnoor M, Aaberge L, et al. Invasive versus conservative strategy in patients aged 80 years or older with non-ST-elevation myocardial infarction or unstable angina pectoris (After Eighty study): an open-label randomised controlled trial. Lancet. 2016;387(10023):1057–65.CrossRefPubMedGoogle Scholar
  7. 7.
    Patel MR, Dehmer GJ, Hirshfeld JW, Smith PK, Spertus JA. ACCF/SCAI/STS/AATS/AHA/ASNC/HFSA/SCCT 2012 appropriate use criteria for coronary revascularization focused update: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, American Society of Nuclear Cardiology, and the Society of Cardiovascular Computed Tomography. J Am Coll Cardiol. 2012;59(9):857–81.CrossRefPubMedGoogle Scholar
  8. 8.
    Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;64(24):e139–228.CrossRefPubMedGoogle Scholar
  9. 9.
    Gross CM, Posch MG, Geier C, et al. Subacute coronary stent thrombosis in cancer patients. J Am Coll Cardiol. 2008;51(12):1232–3.CrossRefPubMedGoogle Scholar
  10. 10.
    Iliescu C, Durand JB, Kroll M. Cardiovascular interventions in thrombocytopenic cancer patients. Tex Heart Inst J. 2011;38(3):259–60.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Krone RJ. Managing coronary artery disease in the cancer patient. Prog Cardiovasc Dis. 2010;53(2):149–56.CrossRefPubMedGoogle Scholar
  12. 12.
    Takashima H, Waseda K, Gosho M, et al. Severity of morphological lesion complexity affects fractional flow reserve in intermediate coronary stenosis. J Cardiol. 2015;66(3):239–45.CrossRefPubMedGoogle Scholar
  13. 13.
    Abbott JD. More than addition the use of fractional flow reserve in serial stenoses. J Am Coll Cardiol Interv. 2012;5(10):1019–20.CrossRefGoogle Scholar
  14. 14.
    Pijls NHJ, Van Gelder B, Van der Voort P, et al. Fractional flow reserve: a useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation. 1995;92(11):3183–93.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tonino PAL, De Bruyne B, Pijls NHJ, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. New Engl J Med. 2009;360(3):213–24.CrossRefPubMedGoogle Scholar
  16. 16.
    Nascimento BR, Belfort AF, Macedo FA, et al. Meta-analysis of deferral versus performance of coronary intervention based on coronary pressure-derived fractional flow reserve. Am J Cardiol. 2015;115(3):385–91.CrossRefPubMedGoogle Scholar
  17. 17.
    Cheneau E, Leborgne L, Mintz GS, et al. Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study. Circulation. 2003;108(1):43–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Hong SJ, Kim BK, Shin DH, et al. Effect of intravascular ultrasound-guided vs angiography-guided everolimus-eluting stent implantation: the IVUS-XPL randomized clinical trial. JAMA. 2015;314(20):2155–63.CrossRefPubMedGoogle Scholar
  19. 19.
    Jang JS, Song YJ, Kang W, et al. Intravascular ultrasound-guided implantation of drug-eluting stents to improve outcome: a meta-analysis. JACC Cardiovasc Interv. 2014;7(3):233–43.CrossRefPubMedGoogle Scholar
  20. 20.
    Khandhar SJ, Yamamoto H, Teuteberg JJ, et al. Optical coherence tomography for characterization of cardiac allograft vasculopathy after heart transplantation (OCTCAV study). J Heart Lung Transplant. 2013;32(6):596–602.CrossRefPubMedGoogle Scholar
  21. 21.
    Jang IK, Tearney GJ, MacNeill B, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111(12):1551–5.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Otsuka F, Joner M, Prati F, Virmani R, Narula J. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol. 2014;11(7):379–89.CrossRefPubMedGoogle Scholar
  23. 23.
    Sinclair H, Bourantas C, Bagnall A, Mintz GS, Kunadian V. OCT for the identification of vulnerable plaque in acute coronary syndrome. JACC Cardiovasc Imaging. 2015;8(2):198–209.CrossRefPubMedGoogle Scholar
  24. 24.
    Miyamoto Y, Okura H, Kume T, et al. Plaque characteristics of thin-cap fibroatheroma evaluated by OCT and IVUS. JACC Cardiovasc Imaging. 2011;4(6):638–46.CrossRefPubMedGoogle Scholar
  25. 25.
    Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59(12):1058–72.CrossRefPubMedGoogle Scholar
  26. 26.
    Yusuf SW, Sami S, Daher IN. Radiation-induced heart disease: a clinical update. Cardiol Res Pract. 2011;2011:317659. doi:10.4061/2011/317659.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Buszman PE, Buszman PP, Banasiewicz-Szkróbka I, et al. Left main stenting in comparison with surgical revascularization: 10-year outcomes of the (Left Main Coronary Artery Stenting) LE MANS Trial. JACC: Cardiovasc Interv. 2016;9(4):318–27.Google Scholar
  28. 28.
    Dash D, Chen SL. Stenting of left main coronary artery stenosis: data to clinical practice. J Cardiovasc Dis Diagn. 2015;3:222.Google Scholar
  29. 29.
    Tornvall P, Collste O, Ehrenborg E, Jarnbert-Petterson H. A case-control study of risk markers and mortality in Takotsubo stress cardiomyopathy. J Am Coll Cardiol. 2016;67(16):1931–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Munoz E, Iliescu G, Vejpongsa P, et al. Takotsubo stress cardiomyopathy: “good news” in cancer patients? J Am Coll Cardiol. 2016;68(10):1143–4.CrossRefPubMedGoogle Scholar
  31. 31.
    Akashi YJ, Nef HM, Lyon AR. Epidemiology and pathophysiology of Takotsubo syndrome. Nat Rev Cardiol. 2015;12(7):387–97.CrossRefGoogle Scholar
  32. 32.
    Fakhri Y, Dalsgaard M, Nielsen D, Lav Madsen P. 5-Fluorouracil-induced acute reversible heart failure not explained by coronary spasms, myocarditis or takotsubo: lessons from MRI. BMJ Case Rep. 2016;2016.Google Scholar
  33. 33.
    Akashi YJ, Goldstein DS, Barbaro G, Ueyama T. Takotsubo cardiomyopathy: a new form of acute, reversible heart failure. Circulation. 2008;118(25):2754–62.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Vejpongsa P, Banchs J, Reyes M, Iliescu G, Akinyemi M, Yusuf SW, Iliescu C. Takotsubo cardiomyopathy in cancer patients. Triggers, recovery, and resumption of therapy. J Am Coll Cardiol. 2015;65(10S):A927.CrossRefGoogle Scholar
  35. 35.
    Elting LS, Rubenstein EB, Martin CG, et al. Incidence, cost, and outcomes of bleeding and chemotherapy dose modification among solid tumor patients with chemotherapy-induced thrombocytopenia. J Clin Oncol. 2001;19(4):1137–46.CrossRefPubMedGoogle Scholar
  36. 36.
    Wang J, Cai X, Cheng X, Song P, Jiang S, Gong J. Acute myocardial infarction caused by tumor-associated thrombotic thrombocytopenic purpura: case report. Med Princ Pract. 2014;23(3):289–91.CrossRefPubMedGoogle Scholar
  37. 37.
    Sarkiss MG, Yusuf SW, Warneke CL, et al. Impact of aspirin therapy in cancer patients with thrombocytopenia and acute coronary syndromes. Cancer. 2007;109(3):621–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Yusuf SW, Iliescu C, Bathina JD, Daher IN, Durand JB. Antiplatelet therapy and percutaneous coronary intervention in patients with acute coronary syndrome and thrombocytopenia. Tex Heart Inst J. 2010;37(3):336–40.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ezequiel Munoz
    • 1
  • Dana Elena Giza
    • 1
  • Ricardo Bellera
    • 2
  • Cezar Iliescu
    • 1
    Email author
  1. 1.Department of CardiologyUniversity of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of CardiologyThe University of Texas Health Science CenterHoustonUSA

Personalised recommendations