Reasoning with Concept Diagrams About Antipatterns in Ontologies

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10383)


Ontologies are notoriously hard to define, express and reason about. Many tools have been developed to ease the ontology debugging and reasoning, however they often lack accessibility and formalisation. A visual representation language, concept diagrams, was developed for expressing ontologies, which has been empirically proven to be cognitively more accessible to ontology users. In this paper we answer the question of “How can concept diagrams be used to reason about inconsistencies and incoherence of ontologies?”. We do so by formalising a set of inference rules for concept diagrams that enables stepwise verification of the inconsistency and incoherence of a set of ontology axioms. The design of inference rules is driven by empirical evidence that concise (merged) diagrams are easier to comprehend for users than a set of lower level diagrams that are a one-to-one translation from OWL ontology axioms. We prove that our inference rules are sound, and exemplify how they can be used to reason about inconsistencies and incoherence.


  1. 1.
    The OWL2 web ontology language., December 2016
  2. 2.
    Protégé: A free, open-source ontology editor., December 2016
  3. 3.
    Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. International Handbooks on Information Systems, pp. 21–43. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Brockmans, S., Volz, R., Eberhart, A., Löffler, P.: Visual modeling of OWL DL ontologies using UML. In: McIlraith, S.A., Plexousakis, D., Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 198–213. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30475-3_15 CrossRefGoogle Scholar
  5. 5.
    Chapman, P., Stapleton, G., Howse, J., Oliver, I.: Deriving sound inference rules for concept diagrams. In: 2011 IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2011, pp. 87–94. IEEE (2011)Google Scholar
  6. 6.
    Corcho, Ó., Roussey, C., Blázquez, L.M.V., Pérez, I.: Pattern-based OWL ontology debugging guidelines. In: Proceedings of the Workshop on Ontology Patterns (WOP 2009), vol. 516, CEUR Workshop Proceedings. (2009)Google Scholar
  7. 7.
    Dau, F., Eklund, P.W.: A diagrammatic reasoning system for the description logic ACL. J. Vis. Lang. Comput. 19(5), 539–573 (2008)CrossRefGoogle Scholar
  8. 8.
    Gil, J., Howse, J., Kent, S.: Formalizing spider diagrams. In: IEEE Symposium on Visual Languages, pp. 130–137. IEEE Computer Society (1999)Google Scholar
  9. 9.
    Guizzardi, G., Sales, T.P.: Detection, simulation and elimination of semantic anti-patterns in ontology-driven conceptual models. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 363–376. Springer, Cham (2014). doi: 10.1007/978-3-319-12206-9_30 Google Scholar
  10. 10.
    Gurr, C.: Effective diagrammatic communication: syntactic, semantic and pragmatic issues. J. Vis. Lang. Comput. 10(4), 317–342 (1999)CrossRefGoogle Scholar
  11. 11.
    Horridge, M., Parsia, B., Sattler, U.: Explaining inconsistencies in OWL ontologies. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 124–137. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04388-8_11 CrossRefGoogle Scholar
  12. 12.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to OWL: the making of a web ontology language. J. Web Semant. 1(1), 7–26 (2003)CrossRefGoogle Scholar
  13. 13.
    Hou, T., Chapman, P., Blake, A.: Antipattern comprehension: an empirical evaluation. In: Formal Ontology in Information Systems. Frontiers in Artificial Intelligence, vol. 283, pp. 211–224. IOS Press (2016)Google Scholar
  14. 14.
    Howse, J., Stapleton, G., Taylor, K., Chapman, P.: Visualizing ontologies: a case study. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 257–272. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25073-6_17 CrossRefGoogle Scholar
  15. 15.
    Itzik, N., Reinhartz-Berger, I.: SOVA - a tool for semantic and ontological variability analysis. In: Joint Proceedings of the CAiSE 2014 Forum and CAiSE 2014 Doctoral Consortium, vol. 1164, pp. 177–184. (2014)Google Scholar
  16. 16.
    Lohmann, S., Negru, S., Haag, F., Ertl, T.: Visualizing ontologies with VOWL. Semant. Web 7(4), 399–419 (2016)CrossRefGoogle Scholar
  17. 17.
    Qi, G., Hunter, A.: Measuring incoherence in description logic-based ontologies. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 381–394. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-76298-0_28 CrossRefGoogle Scholar
  18. 18.
    Ragni, M., Khemlani, S., Johnson-Laird, P.N.: The evaluation of the consistency of quantified assertions. Mem. Cogn. 42(1), 53–66 (2014)CrossRefGoogle Scholar
  19. 19.
    Stapleton, G., Howse, J., Chapman, P., Delaney, A., Burton, J., Oliver, I.: Formalizing concept diagrams. In: 19th International Conference on Distributed Multimedia Systems, Visual Languages and Computing, pp. 182–187. Knowledge Systems Institute (2013)Google Scholar
  20. 20.
    Urbas, M., Jamnik, M., Stapleton, G.: Speedith: a reasoner for spider diagrams. J. Logic Lang. Inf. 24(4), 487–540 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computer LaboratoryUniversity of CambridgeCambridgeUK
  2. 2.Visual Modelling GroupUniversity of BrightonBrightonUK

Personalised recommendations