A Verified Algorithm Enumerating Event Structures

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10383)

Abstract

An event structure is a mathematical abstraction modeling concepts as causality, conflict and concurrency between events. While many other mathematical structures, including groups, topological spaces, rings, abound with algorithms and formulas to generate, enumerate and count particular sets of their members, no algorithm or formulas are known to generate or count all the possible event structures over a finite set of events. We present an algorithm to generate such a family, along with a functional implementation verified using Isabelle/HOL. As byproducts, we obtain a verified enumeration of all possible preorders and partial orders. While the integer sequences counting preorders and partial orders are already listed on OEIS (On-line Encyclopedia of Integer Sequences), the one counting event structures is not. We therefore used our algorithm to submit a formally verified addition, which has been successfully reviewed and is now part of the OEIS.

Keywords

Formal methods OEIS Verified algorithm Enumeration Counting Discrete Event structures Isabelle/HOL Automated reasoning Logic 

References

  1. 1.
    Aho, A.V., Garey, M.R., Ullman, J.D.: The transitive reduction of a directed graph. SIAM J. Comput. 1(2), 131–137 (1972)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Assous, M.R., et al.: Finite labelling problem in event structures. Theor. Comput. Sci. 123(1), 9–19 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event structures, and processes. Inf. Comput. 171(1), 1–49 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bowles, J.K.F.: Decomposing interactions. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 189–203. Springer, Heidelberg (2006). doi:10.1007/11784180_16 CrossRefGoogle Scholar
  5. 5.
    Bowles, J.K.F., Caminati, M.B.: Mind the gap: addressing behavioural inconsistencies with formal methods. In: 2016 23rd Asia-Pacific Software Engineering Conference (APSEC). IEEE Computer Society (2016)Google Scholar
  6. 6.
    Bruni, R., Melgratti, H., Montanari, U.: Event structure semantics for nominal calculi. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 295–309. Springer, Heidelberg (2006). doi:10.1007/11817949_20 CrossRefGoogle Scholar
  7. 7.
    Butelle, F., Hivert, F., Mayero, M., Toumazet, F.: Formal proof of SCHUR conjugate function. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) CICM 2010. LNCS, vol. 6167, pp. 158–171. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14128-7_15 CrossRefGoogle Scholar
  8. 8.
    Caminati, M.B., et al.: Sound auction specification and implementation. In: Proceedings of the Sixteenth ACM Conference on Economics and Computation, pp. 547–564. ACM (2015)Google Scholar
  9. 9.
    Costa-Gomes, M., et al.: Choice, Deferral and Consistency. Discussion Paper Series, Department of Economics 201416. Department of Economics, University of St. Andrews (2014)Google Scholar
  10. 10.
    Distler, A., Shah, M., Sorge, V.: Enumeration of AG-Groupoids. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) CICM 2011. LNCS, vol. 6824, pp. 1–14. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22673-1_1 CrossRefGoogle Scholar
  11. 11.
    Genestier, R., Giorgetti, A., Petiot, G.: Sequential generation of structured arrays and its deductive verification. In: Blanchette, J.C., Kosmatov, N. (eds.) TAP 2015. LNCS, vol. 9154, pp. 109–128. Springer, Cham (2015). doi:10.1007/978-3-319-21215-9_7 CrossRefGoogle Scholar
  12. 12.
    Kammüller, F.: Mechanical analysis of finite idempotent relations. Fundamenta Informaticae 107(1), 43–65 (2011)MathSciNetMATHGoogle Scholar
  13. 13.
    Kleitman, D.J., Rothschild, B.L.: Asymptotic enumeration of partial orders on a finite set. Trans. Am. Math. Soc. 205, 205–220 (1975)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lochbihler, A.: Formalising finfuns – generating code for functions as data from Isabelle/HOL. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 310–326. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9_22 CrossRefGoogle Scholar
  15. 15.
    Pfeiffer, G.: Counting transitive relations. J. Integer Sequences 7(2), 3 (2004)MathSciNetMATHGoogle Scholar
  16. 16.
    Sloane, N.: The on-line Encyclopedia of integer sequences. Ann. Math. Informaticae 41, 219–234 (2013)MathSciNetMATHGoogle Scholar
  17. 17.
    Vera-López, A., Arregi, J.: Conjugacy classes in unitriangular matrices. Linear Algebra Appl. 370, 85–124 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science: Semantic Modelling, vol. 4, pp. 1–148. Oxford University Press, Oxford (1995)Google Scholar
  19. 19.
    Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). doi:10.1007/3-540-17906-2_31 CrossRefGoogle Scholar
  20. 20.
    Winskel, G.: Events, causality and symmetry. Comput. J. 54(1), 42–57 (2011). https://doi.org/10.1093/comjnl/bxp052 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of St AndrewsSt AndrewsUK

Personalised recommendations