Planetary Ionospheres

Magnetic Fields, Chemical Processes, and Ionospheric Structure
  • Erdal YiğitEmail author
Part of the SpringerBriefs in Earth Sciences book series (BRIEFSEARTH)


An ionosphere is a consequence of photoionization and is the partially ionized portion of a planetary atmosphere. It contains free electrons and ions, whose dynamics produces complex current systems, depending on ambient electric fields, and collisional properties, and gyration around magnetic fields. In terms of the vertical extent, the ionosphere coincides with the thermosphere, where the neutral species are diffusively separated, owing to strong molecular diffusivity and insufficient turbulent mixing. In a similar fashion, the vertical profiles of plasma species are greatly influenced by diffusive equilibrium. Ionospheric dynamics is modified by the geomagnetic field, which has a strong dipole component. Chemical processes have to be considered in detail in additional to dynamics in the ionosphere. Therefore, in the chemical continuity equation, chemical production and loss processes cannot be neglected. A Chapman layer is a first order approximation of production of ionization by the absorption of solar energy, which is a good description for the lower ionosphere (\(E, F_1\) regions), but higher up in the \(F_2 \) region transport becomes important. Qualitatively, Earth’s and Mars ionospheres demonstrate overall various similarities, besides major differences. Interaction with other species, and external (solar effects) and internal (lower atmospheric) processes play an important role in both ionospheres.


Ionosphere Diffusive equilibrium Magnetic fields Chapman layer Space weather Planetary ionosphere Earth’s ionosphere Martian ionosphere 


  1. Appleton EV (1932) Wireless studies of the ionosphere. Inst Electr Eng-Proc Wirel Sect Inst 7(21):257–265Google Scholar
  2. Benna M, Mahaffy PR, Grebowsky JM, Fox JL, Yelle RV, Jakosky BM (2015) First measurements of composition and dynamics of the martian ionosphere by maven’s neutral gas and ion mass spectrometer. Geophys Res Lett 42(21):8958–8965. doi:10.1002/2015GL066146,
  3. Bilitza D, Altadill D, Zhang Y, Mertens C, Truhlik V, Richards P, McKinnell L, Reinisch B (2014) The international reference ionosphere 2012 a model of international collaboration. J Space Weather Space Clim 4:A07. doi:10.1051/swsc/2014004,
  4. Chapman S (1931) The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth part ii. grazing incidence. Proc Phys Soc 43(5):483,
  5. Chen RH, Cravens TE, Nagy AF (1978) The Martian ionosphere in light of the Viking observations. J Geophys Res 83(A8):647–664CrossRefGoogle Scholar
  6. Eleman F (1973) The geomagnetic field. In: Cosmical geophysics, pp 45–62Google Scholar
  7. Elias AG, Zossi BS, Yiğ E, Saavedra Z, de Haro Barbas BF (2017) Earth’s magnetic field effect on MUF calculation and consequences for hmf2 trend estimates. JASTP,,
  8. Finlay C, Maus S, Beggan C, Bondar T, Chambodut A, Chernova T, Chulliat A, Golovkov V, Hamilton B, Hamoudi M et al (2010) International geomagnetic reference field: the eleventh generation. Geophys J Int 183(3):1216–1230CrossRefGoogle Scholar
  9. Finlay CC, Olsen N, Tøffner-Clausen L (2015) Dtu candidate field models for igrf-12 and the chaos-5 geomagnetic field model. Earth, Planets and Space 67(1):114. doi:10.1186/s40623-015-0274-3,
  10. Forbes JM, Roble RG, Fesen CG (1993) Acceleration, heating, and compositional mixing of the thermosphere due to upward propagating tides. J Geophys Res Space Physics 98(A1):311–321. doi:10.1029/92JA00442,
  11. Garcia RR, Solomon S (1985) The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J Geophys Res 90:3850–3868, implementation of Lindzen’s parameterization into a two-dimensional dynamical model to study the effects of GWs in the MLTGoogle Scholar
  12. Gjerloev J (2012) The supermag data processing technique. J Geophys Res Space Physics 117(A9)Google Scholar
  13. Gong Y, Zhou Q, Zhang SD, Aponte N, Sulzer M, Gonzalez S (2013) The F region and topside ionosphere response to a strong geomagnetic storm at Arecibo. J Geophys Res 118:51775183.
  14. Laštovička J (2006) Forcing of the ionosphere by waves from below. J Atmos Sol-Terr Phys 68:479–497CrossRefGoogle Scholar
  15. Laštovička J (2009) Lower ionosphere response to external forcing: a brief review. Adv Space Res 43:1–14CrossRefGoogle Scholar
  16. Liu AZ, Chester CS (2004) Vertical dynamical transport of mesopheric constituents by dissipating gravity waves. J Atmos Sol-Terr Phys 66:267–275. CrossRefGoogle Scholar
  17. Maus SS, Macmillan T, Chernova T, Choi S, Dater D, Golokov V, Lesur V, Lowes F, Lühr H, Mai W, McLean S, Olsen N, Rother M, Sabaka T, Thomson A, Zvera T (2005) The 10th generation international geomagnetic reference field. Phys Earth Planetary Interiors 151:320–322CrossRefGoogle Scholar
  18. Nair H, Allen M, Anbar AD, Yung YL, Clancy RT (1994) A photochemical model of the martian atmosphere. Icarus 111:124–150CrossRefGoogle Scholar
  19. Offermann D, Jarischa M, Schmidt H, Oberheide J, Grossmann KU, Guseva O, Russell JM, Mlynczak MG (2007) The "wave turbopause". J Atmos Sol-Terr Phys 69:2139–2158. CrossRefGoogle Scholar
  20. Olsen N, Hulot G, Lesur V, Finlay CC, Beggan C, Chulliat A, Sabaka TJ, Floberghagen R, Friis-Christensen E, Haagmans R, Kotsiaros S, Lhr H, Tffner-Clausen L, Vigneron P (2015) The swarm initial field model for the 2014 geomagnetic field. Geophys Res Lett 42(4):1092–1098. doi:10.1002/2014GL062659,
  21. Pancheva D, Miyoshi Y, Mukhtarov P, Jin H, Shinagawa H, Fujiwara H (2012) Global response of the ionosphere to atmospheric tides forced from below: Comparison between cosmic measurements and simulations by atmosphere-ionosphere coupled model gaia. J Geophys Res Space Phys 117(A7): doi:10.1029/2011JA017452,
  22. Ratcliffe JA (1972) An introduction to the ionosphere and magnetosphere. Cambridge University Press, CambridgeGoogle Scholar
  23. Ratcliffe JA, Weekes K (1960) The ionosphere. In: Ratcliffe JA (ed) Physics of the upper atmosphere, Academic press, pp 378–456Google Scholar
  24. Reinisch B (2000) Radio sounding of geospace plasmas. Física de la Tierra 12:105Google Scholar
  25. Rishbeth H, Garriott OK (1969) Introduction to ionospheric physics, International geophysics series, vol 14. Academic PressGoogle Scholar
  26. Rishbeth H, Mendillo M (2004) Ionospheric layers of mars and earth. Planet Space Sci 52:
  27. Schunk RW, Nagy AF (2009) Ionospheres: Physics, plasma physics and chemistry. Atmospheric and space science series. Cambridge University PressGoogle Scholar
  28. Singer SF, Maple E, Bowen WA (1951) Evidence for ionosphere currents from rocket experiments near the geomagnetic equator. J Geophys Res 56(2):265–281. doi:10.1029/JZ056i002p00265,
  29. Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, Barrois O, Bertrand F, Bondar T, Boness A, Brocco L, Canet E, Chambodut A, Chulliat A, Coïsson P, Civet F, Du A, Fournier A, Fratter I, Gillet N, Hamilton B, Hamoudi M, Hulot G, Jager T, Korte M, Kuang W, Lalanne X, Langlais B, Léger JM, Lesur V, Lowes FJ, Macmillan S, Mandea M, Manoj C, Maus S, Olsen N, Petrov V, Ridley V, Rother M, Sabaka TJ, Saturnino D, Schachtschneider R, Sirol O, Tangborn A, Thomson A, Tøffner-Clausen L, Vigneron P, Wardinski I, Zvereva T (2015) International geomagnetic reference field: the 12th generation. Earth Planets Space 67(1):79. doi:10.1186/s40623-015-0228-9,
  30. Vichare G, Ridley A, Yiğit E (2012) Quiet-time low latitude ionospheric electrodynamics in the non-hydrostatic global ionospherethermosphere model. J Atmos Sol-Terr Phys 80:161–172. CrossRefGoogle Scholar
  31. Walterscheid RL, Hickey MP (2012) Gravity wave propagation in a diffusively separated gas: effects on the total gas. J Geophys Res 117:A05303. Google Scholar
  32. Witasse O, Cravens T, Mendillo M, Moses J, Kliore A, Nagy A, Breus T (2008) Solar system ionospheres. Space Sci Rev 139:235–265. CrossRefGoogle Scholar
  33. Withers P, Vogt M, Mahaffy P, Benna M, Elrod M, Jakosky B (2015) Changes in the thermosphere and ionosphere of mars from viking to maven. Geophys Res Lett 42:
  34. Yiğit E (2015) Atmospheric and space sciences: neutral atmospheres, vol 1. SpringerBriefs in Earth Sci., Springer, Netherlands.
  35. Yiğit E, Ridley AJ (2011) Role of variability in determining the vertical wind speeds and structure. J Geophys Res 116:A12305. Google Scholar
  36. Yiğit E, Ridley AJ, Moldwin MB (2012) Importance of capturing heliospheric variability for studies of thermospheric vertical winds. J Geophys Res 117:A07306. Google Scholar
  37. Yiğit E, Knížová PK, Georgieva K, Ward W (2016) A review of vertical coupling in the atmosphere-ionosphere system: effects of waves, sudden stratospheric warmings, space weather, and of solar activity. J Atmos Sol-Terr Phys 141:1–12.,
  38. Yonezawa T (1966) Theory of formation of the ionosphere. Space Sci Rev 5:3–56CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Physics and AstronomyGeorge Mason UniversityFairfaxUSA

Personalised recommendations