Advertisement

How to Build a Vibration Monitoring System on Your Own?

  • Adam JabłońskiEmail author
  • Michał Żegleń
  • Wojciech Staszewski
  • Piotr Czop
  • Tomasz Barszcz
Conference paper
Part of the Applied Condition Monitoring book series (ACM, volume 9)

Abstract

With the ultimate goal of cost reduction of condition monitoring, this paper illustrates how simple data acquisition and processing systems could be designed and realized taking advantage of latest cheap, yet powerful electronic elements. The discussed designs are based on recently popular STM32 and Raspberry Pi boards, and analog MEMS accelerometers. The final prototype design shown in the paper is developed on the F401re version of the STM family, which is working on ARM M4 Cortex processor, and the ADXL001-70 MEMS accelerometer from Analog Devices Ltd. The entire design has been develop using a standard notebook with Windows 10 operating system. The major interest of presenting this design is that in wide range of conditions, the self-made system developed from scratch with elements, price of which does not exceed 15 USD, is capable of generating a frequency spectrum equally significant to a spectrum generated by a full-scale, costly commercial condition monitoring system.

Keywords

Condition monitoring system Data acquisition MEMS 

References

  1. 1.
    Blanke, M., Kinnaert, M., Lunze, J., & Staroswiecki, M. (2006). Diagnosis and fault tolerant control (2nd ed.). Berlin: Springer.zbMATHGoogle Scholar
  2. 2.
    Hameed, Z., Ahn, S. H., & Cho, Y. M. (2010). Practical aspects of a condition monitoring system for a wind turbine with emphasis on its design, system architecture, testing and installation. Renewable Energy, 5(5), 879–894. doi: 10.1016/.renene.2009.10.031.CrossRefGoogle Scholar
  3. 3.
    Isermann, R. (2011). Fault-diagnosis applications. London: Blackwell.Google Scholar
  4. 4.
    Pan, M., Sas, P., & Van Brussel, H. (1996). Nonstationary time-frequency analysis for machine condition monitoring. doi: 10.1109/TFSA.1996.550096.
  5. 5.
    Wang, W., Tse, P. W., & Lee, J. (2007). Remote machine maintenance system through Internet and mobile communication. International Journal of Advanced Manufacturing Technology, 31, 783–789. doi: 10.1007/s00170-005-0236-1.CrossRefGoogle Scholar
  6. 6.
    Albarbar, A., Badri, A., Jyoti, K., & Starr, S. (2008). Performance evaluation of MEMS accelerometers. Measurement, 42, 790–795. doi: 10.1016/j.measurement.2008.12.002.CrossRefGoogle Scholar
  7. 7.
    Nagel, D. J., & Zaghloul, M. E. (2001). MEMS: Micro technology, mega impact. IEEE Circuits and Devices Magazine, 17(2). doi: 10.1109/101.920875.
  8. 8.
    Ratcliffe, C., Heider, D., Crane, R., Krauthauser, C., Yoon, M. K., & Gillespie, J. W. (2007). Investigation into the use of low cost MEMS accelerometers for vibration based damage detection. Composite Structures, 82, 61–70. doi: 10.1016/j.compstruct.2006.11.012.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Adam Jabłoński
    • 1
    Email author
  • Michał Żegleń
    • 1
  • Wojciech Staszewski
    • 1
  • Piotr Czop
    • 1
  • Tomasz Barszcz
    • 1
  1. 1.Akademia Górniczo-Hutnicza im. Stanisława Staszica w KrakowieWydział Inżynierii Mechanicznej i Robotyki, Katedra Robotyki i MechatronikiKrakówPoland

Personalised recommendations