Advertisement

Efficient Context Management and Personalized User Recommendations in a Smart Social TV Environment

  • Fotis Aisopos
  • Angelos Valsamis
  • Alexandros Psychas
  • Andreas Menychtas
  • Theodora Varvarigou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10382)

Abstract

With the emergence of Smart TV and related interconnected devices, second screen solutions have rapidly appeared to provide more content for end-users and enrich their TV experience. Given the various data and sources involved - videos, actors, social media and online databases- the aforementioned market poses great challenges concerning user context management and sophisticated recommendations that can be addressed to the end-users. This paper presents an innovative Context Management model and a related first and second screen recommendation service, based on a user-item graph analysis as well as collaborative filtering techniques in the context of a Dynamic Social & Media Content Syndication (SAM) platform. The model evaluation provided is based on datasets collected online, presenting a comparative analysis concerning efficiency and effectiveness of the current approach, and illustrating its added value.

Keywords

Smart TV recommendations Social media Second screen Context management Graph analysis 

Notes

Acknowledgements

This work has been supported by the SAM project and funded from the European Union’s 7th Framework Programme for research, technological development and demonstration under grant agreement no 611312.

References

  1. 1.
    Heino, N., Tramp, S., Auer, S.: Managing web content using linked data principles-combining semantic structure with dynamic content syndication. In: Computer Software and Applications Conference (COMPSAC), pp. 245–250. IEEE (2011)Google Scholar
  2. 2.
    Socialising Around Media (SAM) Project: Dynamic Social and Media Content Syndication for 2nd Screen. http://samproject.net/
  3. 3.
    Vicknair, C., et al.: A comparison of a graph database and a relational database: a data provenance perspective. In: Proceedings of the 48th Annual Southeast Regional Conference. ACM (2010)Google Scholar
  4. 4.
    Holzschuher, F., Peinl, R.: Performance of graph query languages: comparison of cypher, gremlin and native access in Neo4j. In: Proceedings of the Joint EDBT/ICDT 2013 Workshop (2013)Google Scholar
  5. 5.
    Miller, J.J.: Graph database applications and concepts with Neo4j. In: Proceedings of the Southern Association for Information Systems Conference, Atlanta, GA, USA, March 2013Google Scholar
  6. 6.
    Demovic, L., et al.: Movie recommendation based on graph traversal algorithms. In: 2013 24th International Workshop on Database and Expert Systems Applications (DEXA). IEEE (2013)Google Scholar
  7. 7.
    Menychtas, A., Tomás, D., Tiemann, M., Santzaridou, C., Psychas, A., Kyriazis, D., Vidagany, J.V., Campbell, S.: Dynamic social and media content syndication for second screen. Int. J. Virtual Communities Soc. Netw. (IJVCSN) 7, 50–69 (2015)CrossRefGoogle Scholar
  8. 8.
    Santzaridou, C., Menychtas, A., Psychas, A., Varvarigou, T.: Context management and analysis for social tv platforms. In: eChallenges e-2015 (2015)Google Scholar
  9. 9.
    Sarwar, B.M., et al.: Recommender systems for large-scale e-commerce: scalable neighborhood formation using clustering. In: Proceedings of the Fifth International Conference on Computer and Information Technology, vol. 1 (2002)Google Scholar
  10. 10.
    Wei, K., Huang, J., Fu, S.: A survey of e-commerce recommender systems. In: 2007 International Conference on Service Systems and Service Management. IEEE (2007)Google Scholar
  11. 11.
    Zhao, Z., et al.: Improving user topic interest profiles by behavior factorization. In: Proceedings of the 24th International Conference on World Wide Web (2015)Google Scholar
  12. 12.
    Krauss, C., George, L., Arbanowski, S.: TV predictor: personalized program recommendations to be displayed on smarttvs. In: Proceedings of 2nd International Workshop on Big Data, Streams and Heterog. Source Mining: Algorithms, Systems, Programming Models and Applications (2013)Google Scholar
  13. 13.
    Kim, E., Pyo, S., Park, E., Kim, M.: An automatic recommendation scheme of TV program contents for (IP) TV personalization (2011)Google Scholar
  14. 14.
    Schafer, J.Ben, Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-72079-9_9 CrossRefGoogle Scholar
  15. 15.
    Tserpes, K., Aisopos, F., Kyriazis, D., Varvarigou, T.: Service selection decision support in the internet of services. In: Altmann, J., Rana, O.F. (eds.) GECON 2010. LNCS, vol. 6296, pp. 16–33. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15681-6_2 CrossRefGoogle Scholar
  16. 16.
    Chen, H., Cui, X., Jin, H.: Top-k followee recommendation over microblogging systems by exploiting diverse information sources. Future Gener. Comput. Syst. 55, 534–543 (2016)CrossRefGoogle Scholar
  17. 17.
    Salter, J., Antonopoulos, N.: CinemaScreen recommender agent: combining collaborative and content-based filtering. IEEE Intell. Syst. 21(1), 35–41 (2006)CrossRefGoogle Scholar
  18. 18.
    Kwon, H.-J., Hong, K.-S.: Personalized smart TV program recommender based on collaborative filtering and a novel similarity method. IEEE Trans. Consum. Electron. 57(3), 1416–1423 (2011)CrossRefGoogle Scholar
  19. 19.
    Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2008)Google Scholar
  20. 20.
    Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative filtering recommender systems. Found. Trends Hum. Comput. Interact. 4(2), 81–173 (2011)CrossRefGoogle Scholar
  21. 21.
    Koren, Y.: Collaborative filtering with temporal dynamics. Commun. ACM 53(4), 89–97 (2010)CrossRefGoogle Scholar
  22. 22.
    SAM deliverable D6.9.2 – Context Analysis & Dynamic Creation of Social Communities Public Report (second version). http://samproject.net/sam-community/
  23. 23.
    Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TiiS) 5(4) (2015). Article 19Google Scholar
  24. 24.
    Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)zbMATHGoogle Scholar
  25. 25.
    Apache JMeter, an open source Java application designed to load test functional behavior and measure performance. http://jmeter.apache.org/
  26. 26.
    Li, D., Chen, C., Lv, Q., Shang, L., Zhao, Y., Lu, T., Gu, N.: An algorithm for efficient privacy-preserving item-based collaborative filtering. Future Gener. Comput. Syst. 55, 311–320 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fotis Aisopos
    • 1
  • Angelos Valsamis
    • 2
  • Alexandros Psychas
    • 1
  • Andreas Menychtas
    • 1
  • Theodora Varvarigou
    • 1
  1. 1.Distributed, Knowledge and Media Systems GroupNational Technical University of AthensAthensGreece
  2. 2.Department of Informatics and TelecommunicationsNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations