Skip to main content

The Long Road to Developing Agromining/Phytomining

  • Chapter
  • First Online:
Agromining: Farming for Metals

Part of the book series: Mineral Resource Reviews ((MIRERE))

Abstract

The concept of phytomining is a natural extension of botanical prospecting and the study of metal biochemistry and biogeography of metal hyperaccumulator plants. Some elements may be phyto-extracted to remediate soils, but the recovered biomass would have little economic value (Cd, As, etc.) and disposal of the biomass would be a cost. A few elements may have sufficient economic value in phytomining biomass to support commercial practice (Ni, Co, Au). The development of phytomining requires (1) selection of high-biomass hyperaccumulator plant species; (2) evaluation of genetic diversity and breeding of improved strains with higher yields of the phytoextracted element; (3) development of agronomic practices to maximize economic return; and (4) development of methods to recover the phytomined element from the plant biomass. Plant species and methods for phytomining of soil Ni have been demonstrated for several species and locations (temperate and tropical climates). Production of Ni metal in an electric arc furnace smelter, and of Ni(NH4)2SO4 using a hydrometallurgical method, have been demonstrated. Full commercial phytomining of Ni is beginning in Albania using Alyssum murale, and major trials in Malaysia are underway using Phyllanthus securinegioides. Variable prices of commodity metals add confusion to the development of commercial phytomining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboudrar W, Schwartz C, Benizri E, Morel JL, Boularbah A (2007) Soil microbial diversity as affected by the rhizosphere of the hyperaccumulator Thlaspi caerulescens under natural conditions. Int J Phytoremediation 9:41–52

    Article  Google Scholar 

  • Aboudrar W, Schwartz C, Morel JL, Boularbah A (2013) Effect of nickel-resistant rhizosphere bacteria on the uptake of nickel by the hyperaccumulator Noccaea caerulescens under controlled conditions. J Soils Sediments 13:501–507

    Article  Google Scholar 

  • Anderson C, Moreno C, Meech J (2005) A field demonstration of gold phytoextraction technology. Miner Eng 18:385–392

    Article  Google Scholar 

  • Angle JS, Linacre NA (2005) Metal phytoextraction—a survey of potential risks. Int J Phytoremediation 7:241–254

    Article  Google Scholar 

  • Angle JS, Chaney RL, Baker AJM, Li Y, Reeves R, Volk V, Roseberg R, Brewer E, Burke S, Nelkin JP (2001) Developing commercial phytoextraction technologies: practical considerations. S Afr J Sci 97:619–623

    Google Scholar 

  • Anonymous (1990) NEA dumps on science art. Science 250:1515

    Google Scholar 

  • Anonymous (1994) Nickel farm. Discover Magazine, Sept Issue, p 19

    Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metal elements—a review of their distribution, ecology, and phytochemistry. Biorecovery 1:81–126

    Google Scholar 

  • Baker AJM, Brooks RR, Reeves RD (1988) Growing for gold and copper and zinc (plants that accumulate metals). New Sci 1603:44–48

    Google Scholar 

  • Baker AJM, Reeves RD, Hajar ASM (1994) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol 127:61–68

    Article  Google Scholar 

  • Baker AJM, Morel JL, Schwartz C (1997) Des plantes pour dépolluer les friches industrielles. Biofutur 69:30–33

    Article  Google Scholar 

  • Bani A (2009) Phytoextraction du Ni dans les sols ultramafiques d’Albanie. Thèse de Doctorat, Institut National Polytechnique de Lorraine, Nancy, France

  • Bani A, Echevarria G, Sulce S, Morel JL, Mullai A (2007) In-situ phytoextraction of Ni by a native population of Alyssum murale on an ultramafic site (Albania). Plant Soil 293:79–89

    Article  Google Scholar 

  • Bani A, Echevarria G, Mullaj A, Reeves R, Morel JL, Sulce S (2009) Nickel hyperaccumulation by Brassicaceae in serpentine soils of Albania and Northwestern Greece. Northeast Nat 16:385–404

    Article  Google Scholar 

  • Bani A, Plavlova D, Echevarria G, Mullaj A, Reeves RD, Morel JL, Sulce S (2010) Nickel hyperaccumulation by the species of Alyssum and Thlaspi (Brassicaceae) from the ultramafic soils of the Balkans. Bot Serbica 34:3–14

    Google Scholar 

  • Bani A, Imeri A, Echevarria G, Pavlova D, Reeves RD, Morel JL, Sulçe S (2013) Nickel hyperaccumulation in the serpentine flora of Albania. Fresen Environ Bull 22:1792–1801

    Google Scholar 

  • Bani A, Echevarria G, Sulce S, Morel JL (2015a) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytoremediation 17:117–127

    Article  Google Scholar 

  • Bani A, Echevarria G, Zhang X, Benizri E, Laubie B, Morel JL, Simonnot M-O (2015b) The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Aust J Bot 63:72–77

    Google Scholar 

  • Barbaroux R, Meunier N, Mercier G, Taillard V, Morel JL, Simonnot M-O, Blais JF (2009) Chemical leaching of nickel from the seeds of the metal hyperaccumulator plant Alyssum murale. Hydrometallurgy 100:10–14

    Article  Google Scholar 

  • Barbaroux B, Mercier G, Blais JF, Morel JL, Simonnot M-O (2011) A new method for obtaining nickel metal from the hyperaccumulator plant Alyssum murale. Sep Sci Technol 83:57–65

    Google Scholar 

  • Barbaroux R, Plasari E, Mercier G, Simonnot M-O, Morel JL, Blais JF (2012) A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale. Sci Total Environ 423:111–119

    Article  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Broadhurst CL, Chaney RL (2016) Growth and metal accumulation of an Alyssum murale nickel hyperaccumulator ecotype co-cropped with Alyssum montanum and perennial ryegrass in serpentine soil. Front Plant Sci 7:451. doi:10.3389/fpls.2016.00451

    Article  Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362

    Article  Google Scholar 

  • Brooks R, Anderson C, Stewart R, Robinson B (1999) Phytomining: growing a crop of a metal. Biologist 46:201–205

    Google Scholar 

  • Cannon HL (1960) Botanical prospecting for ore deposits. Science 132:591–598

    Article  Google Scholar 

  • Chaîneau CH, Morel JL, Oudot J (1995) Microbiological degradation in soil microcosms of fuel oil hydrocarbons from drilling cuttings. Environ Sci Technol 29:1615–1621

    Article  Google Scholar 

  • Chaîneau CH, Morel JL, Oudot J (2000) Biodegradation of fuel oil hydrocarbons in the rhizosphere of maize (Zea mays L.) J Environ Qual 29:569–578

    Article  Google Scholar 

  • Chaney RL (1973) Crop and food chain effects of toxic elements in sludges and effluents. In: Proceedings of joint conference on recycling municipal sludges and effluents on land. National Association of State Universities and Land-Grant College, Washington, DC, pp 120–141

    Google Scholar 

  • Chaney RL (1983a) Plant uptake of inorganic waste constituents. In: Parr JF, Marsh PB, Kla JM (eds) Land treatment of hazardous wastes. Noyes Data Corp, Park Ridge, NJ, pp 50–76

    Google Scholar 

  • Chaney RL (1983b) Potential effects of waste constituents on the food chain. In: Parr JF, Marsh PB, Kla JM (eds) Land treatment of hazardous wastes. Noyes Data Corp, Park Ridge, NJ, pp 152–240

    Google Scholar 

  • Chaney RL (1993) Zinc phytotoxicity. In: Robson AD (ed) Zinc in soils and plants. Kluwer Academic, Dordrecht, pp 135–150

    Chapter  Google Scholar 

  • Chaney RL, Hornick SB, Sikora LJ (1981a) Review and preliminary studies of industrial land treatment practices. In: Proceedings of seventh annual research symposium on land disposal of municipal solid and hazardous waste and resource recovery. EPA-600/9-81-002b, pp 200–212

    Google Scholar 

  • Chaney RL, Kaufman DD, Hornick SB, Parr JF, Sikora LJ, Burge WD, Marsh PB, Willson GB, Fisher RH (1981b) Review of information relevant to land treatment of hazardous wastes. Report to US-EPA Solid and Hazardous Waste Research Division, 476 p

    Google Scholar 

  • Chaney RL, Angle JS, Baker AJM, Li Y-M (1998) Method for phytomining of nickel, cobalt and other metals from soil. US Patent 5,711,784

    Google Scholar 

  • Chaney RL, Brown SL, Li Y-M, Angle JS, Stuczynski TI, Daniels WL, Henry CL, Siebielec G, Malik M, Ryan JA, Compton H (2002) Progress in risk assessment for soil metals, and in-situ remediation and phytoextraction of metals from hazardous contaminated soils. In: Proceedings of US-EPA conference ‘Phytoremediation: state of the science’, 1–2 May 2000, Boston, MA

    Google Scholar 

  • Chaney RL, Kukier U, Siebielec G (2003) Risk assessment for soil Ni, and remediation of soil-Ni phytotoxicity in situ or by phytoextraction. In: Proceedings of Sudbury-2003 (Mining and the Environment III), 27–31 May 2003. Laurentian University, Sudbury, ON, Canada, 43p

    Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1433

    Article  Google Scholar 

  • Chaney RL, Baklanov IA (2017) Phytoremediation and phytomining: status and promise. Adv Bot Res 83:189–221

    Google Scholar 

  • Chaney, RL, Baklanov IA, Ryan TC, Davis AP (2017) Effect of soil volume on Ni hyperaccumulation from serpentine soil by Alyssum corsicum. Int J Phytoremed (In press)

    Google Scholar 

  • Chaney RL, Reeves RD, Baklanov IA, Centofanti T, Broadhurst CL, Baker AJM, Angle JS, van der Ent A, Roseberg RJ (2014) Phytoremediation and phytomining: using plants to remediate contaminated or mineralized environments, Chap. 15. In: Rajakaruna N, Boyd RS, Harris T (eds) Plant ecology and evolution in harsh environments. Nova Science, New York, pp 365–391

    Google Scholar 

  • Chardot V, Massoura ST, Echevarria G, Reeves R, Morel JL (2005) Phytoextraction potential of the nickel hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea. Int J Phytoremediation 7:323–335

    Article  Google Scholar 

  • Chardot-Jacques V, Calvaruso C, Simon B, Turpault MP, Echevarria G, Morel JL (2013) Chrysotile dissolution in the rhizosphere of the nickel hyperaccumulator Leptoplax emarginata. Environ Sci Technol 47:2612–2620

    Article  Google Scholar 

  • De Kimpe C, Morel JL (2000) Urban soils: a growing concern. Soil Sci 165:31–40

    Article  Google Scholar 

  • Deng THB, Cloquet C, Tang YT, Sterckeman T, Echevarria G, Estrade N, Morel JL, Qiu RL (2014) Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants. Environ Sci Technol 48:11926–11933

    Article  Google Scholar 

  • Deng THB, Tang YT, van der Ent A, Sterckeman T, Echevarria G, Morel JL, Qiu RL (2016) Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae). Plant Soil 404:35–45

    Article  Google Scholar 

  • Du RJ, He EKI, Tang YT, PJ H, Ying RR, Morel JL, Qiu RL (2011) How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricata? Int J Phytoremediation 13:1024–1036

    Article  Google Scholar 

  • Durand A, Piutti S, Rue M, Morel JL, Echevarria G, Benizri E (2016) Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth promoting rhizobacteria. Plant Soil 399:179–192

    Article  Google Scholar 

  • Echevarria G, Morel JL, Fardeau JC, Leclerc-Cessac E (1998) Assessment of phytoavailability of nickel in soils. J Environ Qual 27:1064–1070

    Article  Google Scholar 

  • Ernst WHO (1974) Schwermetallvegetation der Erde. Fisher, Stuttgart Germany

    Google Scholar 

  • Ernst WHO (1975) Physiology of heavy metal resistance in plants. In: Symposium proceedings, International conference on heavy metals in the environment Vol II (Part 1). University of Toronto, Toronto, Canada, pp 121–136.

    Google Scholar 

  • Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163–167

    Article  Google Scholar 

  • Ernst WHO (2000) Commentary: Evolution of metal hyperaccumulation and phytoremediation hype. New Phytol 146:357–358

    Article  Google Scholar 

  • Estrade N, Cloquet C, Echevarria G, Sterckeman T, Deng T, Tang YT, Morel JL (2015) Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania). Earth Planet Sci Let 423:24–35

    Article  Google Scholar 

  • Fardeau JC (1981) Cinétiques de dilution isotopique et phosphore assimilable des sols. Thèse Doc, Etat, Paris VI

    Google Scholar 

  • Fardeau JC, Guiraud G, Hétier JM (1979) Etude au moyen de 15N, 32P, 65Zn, 109Cd et 203Hg de quelques limites d’utilisation en agriculture de boues résiduaires. In: Alexandre D and Ott H (eds) First European symposium on treatment and use of sewage sludge, Cadarache, pp 383–390

    Google Scholar 

  • Faucon M-P, Shutcha MN, Meerts P (2007) Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant Soil 301:29–36

    Article  Google Scholar 

  • Gérard E, Echevarria G, Sterckeman T, Morel JL (2001) Cadmium availability to three plant species varying in Cd accumulation pattern. J Environ Qual 29:1117–1123

    Article  Google Scholar 

  • Harris AT, Naidoo K, Nokes J, Walker T, Orton F (2009) Indicative assessment of the feasibility of Ni and Au phytomining in Australia. J Clean Prod 17:194–200

    Article  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    Article  Google Scholar 

  • Iwamoto A (1999) Restoration of Cd-polluted paddy fields in the Jinzu River basin—Progress and prospects of the restoration project. In: Nogawa K, Kurachi M, Kasuya M (eds) Advances in the prevention of environmental cadmium pollution and countermeasures. Eiko Laboratory, Kanazawa, pp 179–183

    Google Scholar 

  • Jaffré T, Schmid M (1974) Accumulation du nickel par une Rubiacée de Nouvelle Calédoniea: Psychotria douarrei (G. Beauvisage) Däniker. C R Acad Sci Paris 278:D1727–D1730

    Google Scholar 

  • Jaffre T (1979) Accumulation due manganese par les Proteacees de Nouvelles-Caledonie. C R Acad Sci Paris Ser D 289:425–428

    Google Scholar 

  • Jiang CA, QT W, Sterckeman T, Schwartz C, Sirguey C, Ouvrard S, Perriguey J, Morel JL (2010) Co-planting can phytoextract similar amounts of cadmium and zinc to mono-cropping from contaminated soils. Ecol Eng 36:391–395

    Article  Google Scholar 

  • Jiang CA, QT W, Goudon R, Echevarria G, Morel JL (2015) Biomass and metal yield of co-cropped Alyssum murale and Lupinus albus. Aust J Bot 63:159–166

    Google Scholar 

  • Kukier U, Chaney RL (2000) Remediating Ni-phytotoxicity of contaminated muck soil using limestone and hydrous iron oxide. Can J Soil Sci 80:581–593

    Article  Google Scholar 

  • Kukier U, Chaney RL (2001) Amelioration of Ni phytotoxicity in muck and mineral soils. J Environ Qual 30:1949–1960

    Article  Google Scholar 

  • Kukier U, Chaney RL (2004) In situ remediation of Ni-phytotoxicity for different plant species. J Plant Nutr 27:465–495

    Article  Google Scholar 

  • Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 32:2090–2102

    Article  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  Google Scholar 

  • Larsen S (1952) The use of 32P in studies on the uptake of phosphorus by plants. Plant Soil 4:1–10

    Article  Google Scholar 

  • Leblanc M, Petit D, Deram A, Robinson BH, Brooks RR (1999) The phytomining and environmental significance of hyperaccumulation of thallium by Iberis intermedia from southern France. Econ Geol 94:109–114

    Article  Google Scholar 

  • Li Y-M, Chaney RL, Brewer EP, Angle JS, Nelkin JP (2003a) Phytoextraction of nickel and cobalt by hyperaccumulator Alyssum species grown on nickel-contaminated soils. Environ Sci Technol 37:1463–1468

    Article  Google Scholar 

  • Li Y-M, Chaney RL, Brewer E, Roseberg RJ, Angle JS, Baker AJM, Reeves RD, Nelkin J (2003b) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    Article  Google Scholar 

  • Losfeld G, Escande V, Jaffré T, L’Huillier L, Grison C (2012) The chemical exploitation of nickel phytoextraction: an environmental, ecologic and economic opportunity for New Caledonia. Chemosphere 89:907–910

    Article  Google Scholar 

  • Mench M, Morel JL, Guckert A (1986) Metal binding of high molecular weight soluble exudates from maize (Zea mays L.) roots. Biol Fertil Soils 3:165–169

    Article  Google Scholar 

  • Miller RJ, Koeppe DE (1971) Accumulation and physiological effects of lead in corn. Trace Subst Environ Health 4:186–193

    Google Scholar 

  • Minguzzi C, Vergnano O (1948) Il contenuto di nichel nelle ceneri di Alyssum bertolonii (Nickel content of the ash of Alyssum bertolonii) (in Italian). Atti della Societa Toscana Scienze Naturali, Pisa, Memorie Serie A 55:49–74

    Google Scholar 

  • Montarges-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A, Morel JL (2008) Identification of nickel chelators in three hyperaccumulating plants: an XR spectroscopic study. Phytochemistry 69:1695–1709

    Article  Google Scholar 

  • Morel JL (1977) Evolution des boues des stations d’épuration dans les sols. Thèse Docteur Ingénieur, Université de Nancy 1, Nancy, France

    Google Scholar 

  • Morel JL (1985) Transfert sol-plante des métaux lourds: le rôle des mucilages racinaires. Thèse Doctorat d’Etat, Institut National Polytechnique de Lorraine, Nancy, France

    Google Scholar 

  • Morel JL (1997) Bioavailability of trace elements to terrestrial plants, Chap 6. In: Tarradellas J, Bitton G, Rossel D (eds) Soil ecotoxicology. Lewis, CRC, Boca Raton, FL, pp 141–176

    Google Scholar 

  • Morel JL (2012) In: Amouroux J, Blin E, Coquery M, Fontecave M, Goffé B, Guéritte F, Martin Ruel S, Monsan P, Morel JL, Rohmer M, Rupp-Dahlem C, Sanchez C, Soussana JF, Villenave E (eds) La phytoremédiation des sols contaminés: des plantes pour guérir… les sols. EDP Sciences, Collection Chimie et Nature, 300p. ISBN: 978-2-7598-0754-3

    Google Scholar 

  • Morel JL (2013) Using plants to “micro-mine” metals. http://www.inra.fr/en/Scientists-Students/Biomass/All-the-news/Using-plants-to-micro-mine-metals

  • Morel JL, Guckert A (1984) Evolution en plein champ de la solubilité dans DTPA des métaux lourds du sol introduits par des épandages de boues urbaines chaulées. Agronomie 4:377–386

    Article  Google Scholar 

  • Morel JL, Mench M, Guckert A (1986) Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biol Fertil Soils 2:29–34

    Article  Google Scholar 

  • Morel JL, Pierrat JC, Guckert A (1988) Effet et arrière-effet de l’épandage de boues urbaines conditionnées à la chaux et au chlorure ferrique sur la teneur en métaux lourds d’un maïs. Agronomie 8:107–113

    Article  Google Scholar 

  • Moskvitch K (2014) Feature article, ‘Good to grow’. New Scientist, London, 22 Mar 2014, pp 47–49

    Google Scholar 

  • Murakami M, Nakagawa F, Ae N, Ito M, Arao T (2009) Phytoextraction by rice capable of accumulating Cd at high levels: reduction of Cd content of rice grain. Environ Sci Technol 43:5878–5883

    Article  Google Scholar 

  • Nicks LJ, Chambers MF (1995) Farming for metals. Mining Environ Manage 15–18 (Sept Issue)

    Google Scholar 

  • Nicks LJ, Chambers MF (1998) A pioneering study of the potential of phytomining for nickel. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, pp 313–326

    Google Scholar 

  • Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel JL, van der Ent A (2016) Current status and challenges in developing Ni phytomining: an agronomic perspective. Plant Soil 406:55–69

    Article  Google Scholar 

  • Parr JF, Marsh PB, Kla JM (eds) (1983) Land treatment of hazardous wastes. Noyes Data Corp, Park Ridge, NJ

    Google Scholar 

  • Perronnet K, Schwartz C, Gérard E, Morel JL (2000) Availability of cadmium and zinc accumulated in the leaves of Thlaspi caerulescens incorporated into soil. Plant Soil 227:257–263

    Article  Google Scholar 

  • Perronnet K, Schwartz C, Morel JL (2003) Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multicontaminated soil. Plant Soil 249:19–25

    Article  Google Scholar 

  • Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21:439–456

    Article  Google Scholar 

  • Rascio N (1977) Metal accumulation by some plants growing on zinc-mine dumps. Oikos 29:250–253

    Article  Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkov S (1994) Phytoremediation of metals. US Patent 5,364,451

    Google Scholar 

  • Rees F, Germain C, Sterckeman T, Morel JL (2015) Plant growth and metal uptake by a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator (Noccaea caerulescens) in contaminated soils amended with biochar. Plant Soil 395:57–73

    Article  Google Scholar 

  • Rees F, Sterckeman T, Morel JL (2016) Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar. Chemosphere 182:1–196

    Google Scholar 

  • Reeves RD, Brooks RR (1983) Hyperaccumulation of lead and zinc by two metallophytes from mining areas of central Europe. Environ Pollut A31:277–285

    Article  Google Scholar 

  • Reeves RD, Brooks RR, Macfarlane RM (1981) Nickel uptake by California Streptanthus and Caulanthus with particular reference to the hyperaccumulator S. polygaloides Gray (Brassicaceae). Am J Bot 68:708–712

    Article  Google Scholar 

  • Reeves R, Schwartz C, Morel JL, Edmondson J (2001) Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediation 3:145–172

    Article  Google Scholar 

  • Robinson B, Ferandez J-E, Madejón P, Marañon T, Murillo JM, Green S, Clothier B (2003) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249:117–125

    Article  Google Scholar 

  • Robinson BH, Bañuelos G, Conesa HM, Evangelou MWH, Schulin R (2009) The phytomanagement of trace elements in soil. Crit Rev Plant Sci 28:240–266

    Article  Google Scholar 

  • Rodrigues J, Houzelot V, Ferrari F, Echevarria G, Laubie B, Morel JL, Simonnot M-O, Pons MN (2016) Life cycle assessment of agromining chain highlights role of erosion control and bioenergy. J Clean Prod 139:770–778

    Article  Google Scholar 

  • Ruttens A, Boulet J, Weyens N, Smeets K, Adriaensen K, Meers E, Van Slycken S, Tack F, Meiresonne L, Thewys T, Witters N, Carleer R, Dupae J, Vangronsveld J (2011) Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. Int J Phytoremediation 13(Suppl 1):194–207

    Google Scholar 

  • Saison C, Schwartz C, Morel JL (2004) Hyperaccumulation of metals by Thlaspi caerulescens as affected by root development and Cd-Zn/Ca-Mg interactions. Int J Phytoremediation 6:49–61

    Article  Google Scholar 

  • Schwartz C (1997) Phytoextraction des métaux des sols pollués par la plante hyperaccumulatrice Thlaspi caerulescens. Thèse de Doctorat, Institut National Polytechnique de Lorraine, Nancy, France

    Google Scholar 

  • Schwartz C, Morel JL, Saumier S, Whiting SN, Baker AJM (1999) Root development of the Zn-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soil. Plant Soil 208:103–115

    Article  Google Scholar 

  • Schwartz C, Guimont S, Saison C, Perronnet K, Morel JL (2001a) Phytoextraction of Cd and Zn by the hyperaccumulator Thlaspi caerulescens as affected by plant size and origin. S Afr J Sci 97:561–564

    Google Scholar 

  • Schwartz C, Perronnet K, Gérard E, Morel JL (2001b) Measurement of in situ phytoextraction of zinc by spontaneous metallophytes growing on a former smelter site. Sci Total Environ 279:215–221

    Article  Google Scholar 

  • Schwartz C, Echevarria G, Morel JL (2003) Phytoextraction of cadmium with Thlaspi caerulescens. Plant Soil 249:27–35

    Article  Google Scholar 

  • Schwartz C, Sirguey C, Peronny S, Reeves RD, Bourgaud F, Morel JL (2006) Testing of outstanding individuals of Thlaspi caerulescens for Cd phytoextraction. Int J Phytoremediation 8:339–357

    Article  Google Scholar 

  • Shallari S (1997) Biodisponibilité du nickel du sol pour l’hyperaccumulateur Alyssum murale . Thèse de Doctorat, Institut National Polytechnique de Lorraine, Nancy, France

  • Shallari S, Schwartz C, Hasko A, Morel JL (1998) Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ 209:133–142

    Article  Google Scholar 

  • Shallari S, Echevarria G, Schwartz C, Morel JL (2001) Availability of nickel in soils for the hyperaccumulator Alyssum murale (Waldst. & Kit.). S Afr J Sci 97:568–570

    Google Scholar 

  • Siebielec G, Chaney RL, Kukier U (2007) Liming to remediate Ni contaminated soils with diverse properties and a wide range of Ni concentration. Plant Soil 299:117–130

    Article  Google Scholar 

  • Simmons RW, Chaney RL, Angle JS, Kruatrachue M, Klinphoklap S, Reeves RD, Bellamy P (2015) Towards practical cadmium phytoextraction with Noccaea caerulescens. Int J Phytoremediation 17:191–199

    Article  Google Scholar 

  • Sinaj S, Mächler F, Frossard E (1999) Assessment of isotopically exchangeable zinc in polluted soils and non polluted soils. Soil Sci Soc Am J 63:1618–1625

    Article  Google Scholar 

  • Sirguey C, Schwartz C, Morel JL (2006) Response of Thlaspi caerulescens to nitrogen, phosphorus and sulfur fertilisation. Int J Phytoremediation 8:149–161

    Article  Google Scholar 

  • Sterckeman T, Douay F, Proix N, Fourrier H (2000) Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environ Pollut 107:377–389

    Article  Google Scholar 

  • Sterckeman T, Perriguey J, Cael M, Schwartz C, Morel JL (2004) Applying a mechanistic model to cadmium uptake by Zea mays and Thlaspi caerulescens: consequence on the assessment of the soil quantity and capacity factors. Plant Soil 262:289–302

    Article  Google Scholar 

  • Sommellier L, Morel JL, Morel C, Wiart J, Fardeau JC (1996) La valeur phosphatée des boues résiduaires des stations d’épuration urbaines. In: Ademe (ed) Collection Valorisation agricole des boues d’épuration. ISBN 2-86817-151-6

    Google Scholar 

  • Tang YT, Cloquet C, Sterckeman T, Echevarria G, Carignan J, Qiu R, Morel JL (2012a) Fractionation of stable zinc isotopes in the field-grown zinc hyperaccumulator Noccaea caerulescens and the zinc-tolerant plant Silene vulgaris. Environ Sci Technol 46:9972–9979

    Google Scholar 

  • Tang YT, Deng THB, QH W, Wang SZ, Qiu RL, Wei ZB, Guo XF, QT W, Lei M, Chen TB, Echevarria G, Sterckeman T, Simonnot M-O, Morel JL (2012b) Designing cropping systems for metal-contaminated sites: a review. Pedosphere 22:470–488

    Article  Google Scholar 

  • Tang L, Ying RR, Jiang D, Zeng XW, Morel JL, Tang YT, Qiu RL (2013) Impaired leaf CO2 diffusion mediates Cd-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata. Plant Physiol Biochem 73:70–76

    Article  Google Scholar 

  • Tang YT, Cloquet C, Deng THB, Sterckeman T, Echevarria G, Yang WJ, Morel JL, Qiu RL (2016) Zinc isotope fractionation in the hyperaccumulator Noccaea caerulescens and the nonaccumulating plant Thlaspi arvense at low and high Zn supply. Environ Sci Technol 50:8020–8027

    Article  Google Scholar 

  • van der Ent A, Baker AJM, Van Balgooy MMJ, Tjoa A (2013) Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. J Geochem Explor 128:72–79

    Article  Google Scholar 

  • Van der Ent A, Baker AJM, Reeves RD, Chaney RL, Anderson C, Meech J, Erskine PD, Simonnot M-O, Vaughan J, Morel JL, Echevarria G, Fogliani B, Mulligan D (2015) ‘Agromining’: farming for metals in the future? Environ Sci Technol 49(8):4773–4780

    Article  Google Scholar 

  • Vaughan J, Riggio J, Chen J, Pen H, Harris HH, van der Ent A (2017) Characterisation and hydrometallurgical processing of nickel from tropical agromined bio-ore. Hydrometallurgy 169:346–355

    Article  Google Scholar 

  • Wang AS, Angle JS, Chaney RL, Delorme TA, Reeves RD (2006) Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant Soil 281:325–337

    Article  Google Scholar 

  • Wild H (1970) Geobotanical anomalies in Rhodesia. 3. The vegetation of nickel-bearing soils. Kirkia 7(Suppl):1–62

    Google Scholar 

  • Wu QT, Deng JC, Long XX, Morel JL, Schwartz C (2006) Selection of appropriate organic additives for enhancing Zn and Cd phytoextraction by hyperaccumulators. J Environ Sci China 18:1113–1118

    Article  Google Scholar 

  • Wu QT, Hei L, Wong JWC, Schwartz C, Morel JL (2007) Co-cropping for phyto-separation of zinc and potassium from sewage sludge. Chemosphere 60:1954–1960

    Article  Google Scholar 

  • Ying RR, Qiu RL, Tang YT, PJ H, Qiu H, Chen HR, Shi TH, Morel JL (2010) Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. J Plant Physiol 167:81–87

    Article  Google Scholar 

  • Zhang X, Houzelot V, Bani A, Morel JL, Echevarria G, Simonnot M-O (2014) Selection and combustion of Ni-hyperaccumulators for the phytomining process. Int J Phytoremediation 16:1058–1072

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rufus L. Chaney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaney, R.L., Baker, A.J.M., Morel, J.L. (2018). The Long Road to Developing Agromining/Phytomining. In: Van der Ent, A., Echevarria, G., Baker, A., Morel, J. (eds) Agromining: Farming for Metals. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-61899-9_1

Download citation

Publish with us

Policies and ethics