Data Mining in Databases: Languages and Indices

  • Elena Baralis
  • Tania Cerquitelli
  • Silvia Chiusano
  • Rosa Meo
Part of the Studies in Big Data book series (SBD, volume 31)


Database systems methodologies and technology can provide a significant support to data mining processes. In this chapter we explore approaches which address the integration between data mining activities and DBMSs from different perspectives. More specifically, we focus on (i) specialized query languages which allow to define complex data mining tasks through the submission of query requests, and (ii) indices, i.e., physical data structures designed to improve the performance of mining algorithms.


Inductive databases Data mining Database indices Association rules Specialised query languages 


  1. 1.
    M. Adnan, R. Alhajj, Drfp-tree: disk-resident frequent pattern tree. Appl. Intell. Springer 30(2), 84–97 (2009)CrossRefGoogle Scholar
  2. 2.
    R. Agrawal, R. Srikant, Fast algorithms for mining association rules in large databases, in VLDB ’94 (1994), pp. 487–499Google Scholar
  3. 3.
    R. Agrawal, R. Srikant, Mining sequential patterns, in International Conference on Data Engineering, Taipei, Taiwan, March 1995Google Scholar
  4. 4.
    R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large databases, in Proc.ACM SIGMOD Conference on Management of Data(British Columbia, Washington, D.C., 1993), pp. 207–216Google Scholar
  5. 5.
    R. Agrawal, T. Imilienski, A. Swami, Mining association rules between sets of items in large databases, in SIGMOD’93, Washington DC, May 1993Google Scholar
  6. 6.
    E. Baralis, T. Cerquitelli, S. Chiusano, Index support for frequent itemset mining in a relational dbms, in ICDE (2005), pp. 754–765Google Scholar
  7. 7.
    E. Baralis, T. Cerquitelli, S. Chiusano, Imine: index support for item set mining. IEEE Trans. Knowl. Data Eng. 21(4), 493–506 (2009)CrossRefGoogle Scholar
  8. 8.
    E. Baralis, T. Cerquitelli, S. Chiusano, A. Grand, Scalable out-of-core itemset mining. Inf. Sci. 293, 146–162 (2015)CrossRefGoogle Scholar
  9. 9.
    G. Buehrer, S. Parthasarathy, A. Ghoting, Out-of-core frequent pattern mining on a commodity pc, in KDD ’06 (2006), pp. 86–95Google Scholar
  10. 10.
    Y.-L. Cheung, Mining frequent itemsets without support threshold: with and without item constraints. IEEE Trans. Knowl. Data Eng. 16(9), 1052–1069 (2004). Member-Ada Wai-Chee FuCrossRefGoogle Scholar
  11. 11.
    G. Cong, B. Liu, Speed-up iterative frequent itemset mining with constraint changes, in ICDM (2002), pp. 107–114Google Scholar
  12. 12.
    M. El-Hajj, O.R. Zaiane, Inverted matrix: Efficient discovery of frequent items in large datasets in the context of interactive mining. in ACM SIGKDD (2003)Google Scholar
  13. 13.
    A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, A. Nguyen, Y.-K. Chen, P. Dubey, Cache-conscious frequent pattern mining on modern and emerging processors. VLDB J. 16(1), 77–96 (2007)CrossRefGoogle Scholar
  14. 14.
    G. Grahne, J. Zhu, Efficiently using prefix-trees in mining frequent itemsets, in FIMI, November 2003Google Scholar
  15. 15.
    G. Grahne, J. Zhu, Mining frequent itemsets from secondary memory, in ICDM ’04 (IEEE Computer Society, Washington, DC, USA, 2004), pp. 91–98Google Scholar
  16. 16.
    J. Han, Y. Fu, W. Wang, K. Koperski, O. Zaiane, DMQL: a data mining query language for relational databases, in Proceedings of SIGMOD-96 Workshop on Research Issues on Data Mining and Knowledge Discovery (1996)Google Scholar
  17. 17.
    J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, in SIGMOD ’00 (2000), pp. 1–12Google Scholar
  18. 18.
    T. Imielinski, H. Mannila, A database perspective on knowledge discovery. Commun. ACM 39(11), 58–64 (1996)CrossRefGoogle Scholar
  19. 19.
    T. Imieliński, A. Virmani, Msql: a query language for database mining. Data Min. Knowl. Disc. 3(4), 373–408 (1999)CrossRefGoogle Scholar
  20. 20.
    B. Lan, B.C. Ooi, K.-L. Tan, Efficient indexing structures for mining frequently patterns, in IEEE ICDE (2002)Google Scholar
  21. 21.
    C.K.-S. Leung, L.V.S. Lakshmanan, R.T. Ng, Exploiting succinct constraints using fp-trees. SIGKDD Explor. Newsl. 4(1), 40–49 (2002)CrossRefGoogle Scholar
  22. 22.
    B. Liu, W. Hsu, Y. Ma, Integrating classification and association rule mining, in Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, KDD’98 (AAAI Press, 1998), pp. 80–86Google Scholar
  23. 23.
    C. Lucchese, S. Orlando, R. Perego, kdci: on using direct count up to the third iteration, in FIMI (2004)Google Scholar
  24. 24.
    H. Mannila, H. Toivonen, A. Inkeri Verkamo, Efficient algorithms for discovering association rules, in KDD Workshop (1994), pp. 181–192Google Scholar
  25. 25.
    R. Meo, Optimization of a language for data mining, in Proceedings of the 2003 ACM Symposium on Applied Computing, Melbourne, Florida, 2003Google Scholar
  26. 26.
    R. Meo, G. Psaila, S. Ceri, A new SQL-like operator for mining association rules, in Proceedings of the 22st VLDB Conference, Bombay, India, September 1996Google Scholar
  27. 27.
    R. Meo, M. Botta, R. Esposito, Query Rewriting in Itemset Mining (Springer, Berlin, 2004), pp. 111–124Google Scholar
  28. 28.
    S. Orlando, C. Lucchese, P. Palmerini, R. Perego, F. Silvestri, kDCI: a multi-strategy algorithm for mining frequent sets, in FIMI (2003)Google Scholar
  29. 29.
    J. Pei, J. Han, L.V.S. Lakshmanan, Pushing convertible constraints in frequent itemset mining. Data Min. Knowl. Discov. 8(3), 227–252 (2004)MathSciNetCrossRefGoogle Scholar
  30. 30.
    PostgreSQL. Postgresql,
  31. 31.
    G. Ramesh, W.A. Maniatty, M.J. Zaki, Indexing and data access methods for database mining, in DMKD (2002)Google Scholar
  32. 32.
    A. Savasere, E. Omiecinski, S.B. Navathe, An efficient algorithm for mining association rules in large databases, in VLDB (1995), pp. 432–444Google Scholar
  33. 33.
    R. Srikant, Q. Vu, R. Agrawal, Mining association rules with item constraints, in KDD (1997), pp. 67–73Google Scholar
  34. 34.
    H. Toivonen, Sampling large databases for association rules, in VLDB (1996), pp. 134–145Google Scholar
  35. 35.
    T. Uno, M. Kiyomi, H. Arimura, LCM ver. 2: efficient mining algorithms for frequent/closed/maximal itemsets, in FIMI ’04 (2004)Google Scholar
  36. 36.
    M.J. Zaki, Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 12(3), 372–390 (2000)CrossRefGoogle Scholar
  37. 37.
    L. Zhao, M.J. Zaki, N. Ramakrishnan, BLOSOM: a framework for mining arbitrary boolean expressions, in KDD ’06 (ACM Press, New York, NY, USA, 2006), pp. 827–832Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Elena Baralis
    • 1
  • Tania Cerquitelli
    • 1
  • Silvia Chiusano
    • 1
  • Rosa Meo
    • 2
  1. 1.Politecnico di TorinoTorinoItaly
  2. 2.Università di TorinoTorinoItaly

Personalised recommendations