First-Order Ontology Mediated Database Querying via Query Reformulation

  • Diego Calvanese
  • Enrico FranconiEmail author
Part of the Studies in Big Data book series (SBD, volume 31)


We address the problem of query answering with ontologies over databases. We consider first-order ontology systems playing the role of a conceptual model of a database represented as a classical finite relational store, either with an open world or a closed world reading. Queries over the conceptual signature are reformulated into queries over the database signature, so to get the same answer directly via SQL relational database technology. We consider two distinct approaches to reformulation, perfect and exact reformulation. We discuss advantages and disadvantages of each of the two approaches, and we report on some significant results appeared in the literature.


Description Logic Canonical Model Conjunctive Query Original Query Query Answering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research has been carried out within the Euregio IPN12 KAOS, funded by the “European Region Tyrol-South Tyrol-Trentino” (EGTC) under the first call for basic research projects, and by unibz. It has also been supported by the unibz CRC projects KENDO and OnProm. We wish to thank Volha Kerhet and Nhung Ngo for their crucial contributions to the results presented in this chapter.


  1. 1.
    S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases (Addison Wesley Publ Co, Reading, 1995)zbMATHGoogle Scholar
  2. 2.
    A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family and relations. J. Artif. Intell. Res. 36, 1–69 (2009)MathSciNetzbMATHGoogle Scholar
  3. 3.
    M. Benedikt, B. ten Cate, E. Tsamoura, Generating low-cost plans from proofs. Proc. PODS 2014, 200–211 (2014)Google Scholar
  4. 4.
    M. Benedikt, J. Leblay, B. ten Cate, E. Tsamoura, Generating Plans from Proofs: The Interpolation-based Approach to Query Reformulation. Synthesis Lectures on Data Management (Morgan & Claypool Publishers, 2016)Google Scholar
  5. 5.
    E. Beth, On Padoa’s method in the theory of definition. Indag. Math. 15, 330–339 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti, M. Rezk, M. Rodriguez-Muro, G. Xiao, Ontop: answering SPARQL queries over relational databases. Semantic Web J. 8(3), 471–487 (2017)CrossRefGoogle Scholar
  7. 7.
    D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-Muro, R. Rosati, Ontologies and databases: the DL-Lite approach, in RW 2009 Tutorial Lectures, ed. by S. Tessaris, E. Franconi. LNCS, vol. 5689 (Springer, Berlin, 2009)Google Scholar
  8. 8.
    D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. of Automated Reasoning 39(3), 385–429 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    B. ten Cate, E. Franconi, İn. Seylan, Beth definability in expressive description logics, in Proceedings of IJCAI 2011 (2011), pp. 1099–1106Google Scholar
  10. 10.
    B. ten Cate, E. Franconi, I. Seylan, Beth definability in expressive description logics. J. Artif. Intell. Res. 48, 347–414 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    R.A. Di Paola, The recursive unsolvability of the decision problem for the class of definite formulas. J. ACM 16(2), 324–327 (1969)CrossRefzbMATHGoogle Scholar
  12. 12.
    T. Eiter, M. Ortiz, M. Simkus, T.K. Tran, G. Xiao, Query rewriting for Horn-SHIQ plus rules, in Proceedings of AAAI 2012 (AAAI Press, 2012), pp. 726–733Google Scholar
  13. 13.
    O. Etzioni, K. Golden, D. Weld, Sound and efficient closed-world reasoning for planning. Artif. Intell. 89, 113–148 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    O. Etzioni, K. Golden, D.S. Weld, Sound and efficient closed-world reasoning for planning. Artif. Intell. 89, 113–148 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    W. Fan, F. Geerts, L. Zheng, View determinacy for preserving selected information in data transformations. Inf. Syst. 37, 1–12 (2012)CrossRefGoogle Scholar
  16. 16.
    I. Feinerer, E. Franconi, P. Guagliardo, Lossless selection views under conditional domain constraints. IEEE Trans. Knowl. Data Eng. 27(2), 504–517 (2015)CrossRefGoogle Scholar
  17. 17.
    E. Franconi, Y.A. Ibanez-Garcia, İ. Seylan, Query answering with DBoxes is hard. ENTCS 278, 71–84 (2011)MathSciNetzbMATHGoogle Scholar
  18. 18.
    E. Franconi, V. Kerhet, N. Ngo, Exact query reformulation with first-order ontologies and databases. Proc. JELIA 2012, 202–214 (2012)MathSciNetzbMATHGoogle Scholar
  19. 19.
    E. Franconi, V. Kerhet, N. Ngo, Exact query reformulation over databases with first-order and description logics ontologies. J. Artif. Intell. Res. 48, 885–922 (2013)MathSciNetzbMATHGoogle Scholar
  20. 20.
    G. Gottlob, S. Kikot, R. Kontchakov, V.V. Podolskii, T. Schwentick, M. Zakharyaschev, The price of query rewriting in ontology-based data access. Artif. Intell. 213, 42–59 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    A.Y. Halevy, Answering queries using views: a survey. VLDB J. 10, 270–294 (2001)CrossRefzbMATHGoogle Scholar
  22. 22.
    R. Kontchakov, C. Lutz, D. Toman, F. Wolter, M. Zakharyaschev, The combined approach to query answering in DL-Lite. Proc. KR 2010, 247–257 (2010)Google Scholar
  23. 23.
    A. Krisnadhi, C. Lutz, Data complexity in the \(\cal{EL}\) family of description logics. Proc. LPAR 2007, 333–347 (2007)zbMATHGoogle Scholar
  24. 24.
    M. Krötzsch, S. Rudolph, P. Hitzler, Complexity boundaries for horn description logics. Proc. AAAI 2007, 452–457 (2007)Google Scholar
  25. 25.
    M. Marx, Queries determined by views: pack your views. Proc. PODS 2007, 23–30 (2007)Google Scholar
  26. 26.
    A. Nash, L. Segoufin, V. Vianu, Views and queries: determinacy and rewriting. ACM Trans. Database Syst. 35, 21:1–21:41 (2010)Google Scholar
  27. 27.
    N. Ngo, E. Franconi, Unique solutions in data exchange under STS mappings, in Proceedings of AMW 2016 (2016)Google Scholar
  28. 28.
    N. Ngo, M. Ortiz, M. Simkus, Closed predicates in description logics: results on combined complexity. Proc. KR 2016, 237–246 (2016)Google Scholar
  29. 29.
    H. Pérez-Urbina, B. Motik, I. Horrocks, Tractable query answering and rewriting under description logic constraints. J. Appl. Logic 8(2), 186–209 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, R. Rosati, Linking data to ontologies. J. Data Semant. X, 133–173 (2008)Google Scholar
  31. 31.
    I. Pratt-Hartmann, Complexity of the two-variable fragment with counting quantifiers. J. Logic Lang. Inf. 14(3), 369–395 (2005)Google Scholar
  32. 32.
    M. Rodriguez-Muro, D. Calvanese, High performance query answering over DL-Lite ontologies. Proc. KR 2012, 308–318 (2012)Google Scholar
  33. 33.
    R. Rosati, On conjunctive query answering in \(\cal{EL}\), in Proceedings of DL 2007. CEUR, vol. 250 (2007), pp. 451–458.
  34. 34.
    R. Rosati, Prexto: query rewriting under extensional constraints in DL-Lite, in Proceedings of ESWC 2012. LNCS, vol. 7295 (Springer, Berlin, 2012), pp. 360–374Google Scholar
  35. 35.
    R. Rosati, A. Almatelli, Improving query answering over DL-Lite ontologies. Proc. KR 2010, 290–300 (2010)Google Scholar
  36. 36.
    İ. Seylan, E. Franconi, J. de Bruijn, Effective query rewriting with ontologies over DBoxes, in Proceedings of IJCAI 2009 (2009), pp. 923–925Google Scholar
  37. 37.
    Toman, D., Weddell, G.: Fundamentals of Physical Design and Query Compilation. Morgan & Claypool Publishers (2011)Google Scholar
  38. 38.
    M.Y. Vardi, The complexity of relational query languages. Proc. STOC 1982, 137–146 (1982)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.KRDB Research CentreFree University of Bozen-BolzanoBolzanoItaly

Personalised recommendations