Advertisement

Candidate Technologies and Evaluation Challenges for 5G

  • Yang Yang
  • Jing Xu
  • Guang Shi
  • Cheng-Xiang Wang
Chapter
Part of the Wireless Networks book series (WN)

Abstract

With several decades of booming development, mobile communications technology has penetrated into many related fields of our daily life. Led by various emerging applications, users have increasing higher requirements for wireless services, posing almost stringent requirements for the technical indicators of network. Therefore, the Fifth Generation mobile communications system (5G) emerges at a historic moment, devotes itself to open curtain of comprehensive informational era and provide excellent user experience. Recently, researches on key technologies for 5G are springing up in the industry, and the corresponding testing, evaluation and verification system need to be established and improved. This chapter will briefly introduce the features of candidate technologies for 5G, and then analyze the challenges faced by 5G evaluation system.

References

  1. 1.
    C. Wang, F. Haider, X. Gao, et al. Cellular Architecture and Key Technologies for 5G Wireless Communication Networks. IEEE Communications Magazine, 2014, 52(2):122–130.CrossRefGoogle Scholar
  2. 2.
    X. Chu, D. Lopez-Perez, Y. Yang, and F. Gunnarsson. Heterogeneous Cellular Networks: Theory, Simulation and Deployment. New York, USA: Cambridge University Press, 2013.CrossRefGoogle Scholar
  3. 3.
    J. G. Andrews, S. Buzzi, W. Choi, et al. What Will 5G Be? IEEE Journal on Selected Areas in Communications, 2014, 32(6):1065–1082.CrossRefGoogle Scholar
  4. 4.
    IMT-2020 (5G) Promotion Group. White Paper on 5G Vision and Requirements, 2014. http://www.imt-2020.cn/zh/documents/download/1.
  5. 5.
    ITU. (2015). Recomendation ITU-R M.2083–0: IMT Vision—Framework and overall objectives of the future development of IMT for 2020 and beyond. Technical report, ITU-R.Google Scholar
  6. 6.
    J. Yang, Y. Qiao, X. Zhang, et al. Characterizing User Behavior in Mobile Internet. IEEE Transactions on Emerging Topics in Computing, 2015, 3(1):95–106.CrossRefGoogle Scholar
  7. 7.
    W. Huang, Z. Chen, W. Dong, et al. Mobile Internet big data platform in China Unicom. Tsinghua Science and Technology, 2014, 19(1):95–101.CrossRefGoogle Scholar
  8. 8.
    L. Xu, W. He, S. Li. Internet of Things in Industries: A Survey. IEEE Transactions on Industrial Informatics, 2014, 10(4):2233–2243.CrossRefGoogle Scholar
  9. 9.
    Z. Sheng, S. Yang, Y. Yu, et al. A survey on the IETF protocol suite for the internet of things: standards, challenges, and opportunities. IEEE Wireless Communications, 2013, 20(6):91–98.CrossRefGoogle Scholar
  10. 10.
    C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos. Context Aware Computing for The Internet of Things: A Survey. IEEE Communications Surveys & Tutorials, 2014, 16(1):414–454.CrossRefGoogle Scholar
  11. 11.
    C. Perera, C. H. Liu, S. Jayawardena, C. Min. A Survey on Internet of Things from Industrial Market Perspective. IEEE Access, 2014, 2:1660–1679.CrossRefGoogle Scholar
  12. 12.
    A. Zanella, N. Bui, A. Castellani, et al. Internet of Things for Smart Cities. IEEE Internet of Things Journal, 2014 , 1(1):22–32.CrossRefGoogle Scholar
  13. 13.
    C. Tsai, C. Lai, M. Chiang, L. T. Yang. Data Mining for Internet of Things: A Survey. IEEE Communications Surveys & Tutorials, 2014, 16(1):77–97.CrossRefGoogle Scholar
  14. 14.
    IMT-2020(5G)Promotion Group. White Paper on 5G Wireless Technology Architecture, 2015. http://www.imt-2020.cn/zh/documents/download/61.
  15. 15.
    Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2014–2019. White Paper, 2015.Google Scholar
  16. 16.
    IMT-2020(5G)Promotion Group. White Paper on 5G Concept, 2015. http://www.imt-2020.cn/zh/documents/download/23
  17. 17.
    A. Osseiran, V. Braun, T. Hidekazu, et al. The foundation of the Mobile and Wireless Communications System for 2020 and beyond Challenges, Enablers and Technology Solutions. IEEE Vehicular Technology Conference, 2013:1–5.Google Scholar
  18. 18.
    A. Osseiran, F. Boccardi, V. Braun, et al. Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Communications Magazine, 2014, 52(5):26–35.CrossRefGoogle Scholar
  19. 19.
    Qualcomm, The 1000x Mobile Data Challenge, 2013. https://www.qualcomm.com/documents/1000x–mobile-data-challenge.
  20. 20.
    T. Wang, B. Huang, J. Pang. Current Situation and Prospect of Spectrum Requirements Forecasting of the Future IMT System. Telecom science, 2013, 29(4):125–130.Google Scholar
  21. 21.
    G. Zhen, D. Ling, M. De, et al. MmWave Massive MIMO based Wireless Backhaul for the 5G Ultra-Dense Network. IEEE Wireless Communications, 2015, 22(5):13–21.CrossRefGoogle Scholar
  22. 22.
    E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta. Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 2014, 52(2):186–195.CrossRefGoogle Scholar
  23. 23.
    J. Shen, J. Zhang, K. B. Letaief. Downlink User Capacity of Massive MIMO Under Pilot Contamination. IEEE Transactions on Wireless Communications, 2015, 14(6):3183–3193.CrossRefGoogle Scholar
  24. 24.
    L. Lu, G. Y. Li, A. L. Swindlehurst, et al. An Overview of Massive MIMO: Benefits and Challenges. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5):742–758.CrossRefGoogle Scholar
  25. 25.
    G. R. MacCartney, T. S. Rappaport. 73 GHz millimeter wave propagation measurements for outdoor urban mobile and backhaul communications in New York City. Proceedings of IEEE International Conference on Communications, 2014: 4862–4867.Google Scholar
  26. 26.
    M. R. Akdeniz, Y. Liu, M. K. Samimi, et al. Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 2014, 32(6):1164–1179.CrossRefGoogle Scholar
  27. 27.
    A. Ghosh, T. A. Thomas, M. C. Cudak, et al. Millimeter-wave enhanced local area systems: a high-data-rate approach for future wireless networks. IEEE Journal on Selected Areas in Communications, 2014, 32(6):1152–1163.CrossRefGoogle Scholar
  28. 28.
    Nokia, Optimizing mobile broadband performance by spectrum refarming. White paper, 2014., http://networks.nokia.com/file/35861/optimizing-mobile-broadband-performance-by-spectrum-refarming.Google Scholar
  29. 29.
    F. M. Abinader, E. P. L. Almeida, F. S. Chaves, et al. Enabling the coexistence of LTE and Wi-Fi in unlicensed bands. IEEE Communications Magazine, 2014, 52(11):54–61.CrossRefGoogle Scholar
  30. 30.
    B. Singh, S. Hailu, K. Koufos, et al. Coordination protocol for inter-operator spectrum sharing in co-primary 5G small cell networks. IEEE Communications Magazine, 2015, 53(7):34–40.CrossRefGoogle Scholar
  31. 31.
    H. Zhang, X. Chu; W. Guo, et al. Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Communications Magazine, 2015, 53(3):158–164.CrossRefGoogle Scholar
  32. 32.
    METIS. Deliverable D1. 4: METIS Channel Models, 2015. https://www.metis2020.com/wp-content/uploads/METIS_D1.4_v3.pdf.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Yang Yang
    • 1
  • Jing Xu
    • 2
  • Guang Shi
    • 3
  • Cheng-Xiang Wang
    • 4
  1. 1.CAS Key Lab of Wireless Sensor Network and CommunicationShanghai Institute of Microsystem and Information TechnologyShanghaiChina
  2. 2.Shanghai Research Center for Wireless CommunicationsShanghaiChina
  3. 3.China Institute of CommunicationsBeijingChina
  4. 4.School of Engineering & Physical SciencesHeriot-Watt UniversityEdinburghUK

Personalised recommendations