Advertisement

The Contribution of Palynological Surveys to Stingless Bee Conservation: A Case Study with Melipona subnitida

  • Camila Maia-Silva
  • Amanda Aparecida Castro Limão
  • Michael Hrncir
  • Jaciara da Silva Pereira
  • Vera Lucia Imperatriz-Fonseca
Chapter

Abstract

Melipona subnitida (Apidae, Meliponini) is one of the few social bee species naturally occurring in the Brazilian tropical dry forest, where the vast majority of food plants are available during a short and unpredictable rainy season. It is a key species concerning the pollination of native plants as well as agricultural crops and has great potential for commercial honey production. However, severe habitat loss over the past century has caused a considerable decline of native bee populations, which demands effective conservation/restoration strategies to protect these important pollinators. In the present chapter, we discuss how melittopalynological studies may help to establish such conservation plans. In the first part, we outline the floral origin of pollen and nectar harvested by colonies of the stingless bee M. subnitida in the dry forest. The second part discusses the importance of knowledge on floral preferences and flowering schedules as solid bases for management plans that may contribute toward reconstruction of suitable habitats for this bee species.

Notes

Acknowledgments

We would like to thank David Roubik, Patricia Vit, and two anonymous reviewers for important suggestions and comments on the manuscript. We would like to thank the students of the Behavioural Ecology Laboratory (bee-LAB) for their help with the data collection. This study complies with current Brazilian laws and was financially supported by grants of the Brazilian Science Foundations CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) to CMS and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) to VLIF (482218/2010-0, 406102/2013-9) and to MH (304722/2010-3, 309914/2013-2, 404156/2013-4).

References

  1. Aleixo KP, Faria LB, Groppo M, Castro, MMN, Silva CI. 2014. Spatiotemporal distribution of floral resources in a Brazilian city: implications for the maintenance of pollinators, especially bees. Urban Forestry and Urban Greening 13: 689–696.CrossRefGoogle Scholar
  2. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G. 2013. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22: 711–728.CrossRefGoogle Scholar
  3. Augspurger, C. K. 1980. Mass-flowering of a tropical shrub (Hybanthus prunifolius) - influence on pollinator attraction and movement. Evolution 34: 475-488.PubMedGoogle Scholar
  4. Baldock KCR, Goddard MA, Hicks DM, Kunin WE, Mitschunas N, Osgathorpe LM, Potts SG, Robertson KM, Scott AV, Stone GN, Vaughan IP, Memmott J. 2015. Where is the UK’ s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proceedings of the Royal Society Biological Sciences 282: 20142849.CrossRefPubMedGoogle Scholar
  5. Barth OM. 2004. Melissopalynology in Brazil: a review of pollen analysis of honeys, propolis and pollen loads of bees. Scientia Agricola 61: 342–350.CrossRefGoogle Scholar
  6. Bawa KS. 1983. Patterns of fl owering in tropical plants. pp. 394–410. In Jones CE, Little RJ, eds. Handbook of Experimental Pollination Biology. Van Nostrand Reinhold Company Inc.; NewYork-NY, USA. 558 pp.Google Scholar
  7. Biesmeijer JC, Vanmarwijk B, Vandeursen K, Punt W, Sommeijer MJ. 1992. Pollen sources for Apis mellifera L (Hym, Apidae) in Surinam, based on pollen grain volume estimates. Apidologie 23: 245–256.CrossRefGoogle Scholar
  8. Biesmeijer JC, Smeets MJAP, Richter JAP, Sommeijer MJ. 1999. Nectar foraging by stingless bees in Costa Rica: botanical and climatological influences sugar concentration of nectar collected by Melipona. Apidologie 30: 43–55.CrossRefGoogle Scholar
  9. Bomfim IGA, Bezerra ADM, Nunes AC, Aragão FAS, Freitas BM. 2014. Adaptive and foraging behavior of two stingless bee species in greenhouse mini watermelon pollination. Sociobiology 61: 502-509.Google Scholar
  10. Bosch J, González AMM, Rodrigo A, Navarro D. 2009. Plant–pollinator networks: adding the pollinator's perspective. Ecology Letters 12: 409-419.CrossRefPubMedGoogle Scholar
  11. Bryant Jr VM 2001. Pollen contents of honey. CAP Newsletter 24: 10-24Google Scholar
  12. Buchmann SL. 1983. Buzz pollination in angiosperms. pp. 73-113. In Jones CE, Little RJ eds. Handbook of Experimental Pollination Biology, Van Nostrand Reinhold; New York, USA. 558 pp.Google Scholar
  13. Buchmann SL, O’rourke MK. 1991. Importance of pollen grain volumes for calculating bee diets. Grana 30: 591–595.CrossRefGoogle Scholar
  14. Cámara JQ, Sousa AH, Vasconcelos WE, Freitas RS, Maia PHS, Almeida JC, Maracajá PB. 2004. Estudos de meliponíneos, com ênfase a Melipona subnitida D. no município de Jandaíra, RN. Revista Biologia e Ciências da Terra 4: 20.Google Scholar
  15. Carvalheiro LG, Veldtman R, Shenkute AG, Tesfay GB, Pirk CWW, Donaldson JS, Nicolson SW. 2011. Natural and within-farmland biodiversity enhances crop productivity. Ecology Letters 14: 251–259.CrossRefPubMedGoogle Scholar
  16. Cortopassi-Laurino M, Ramalho M. 1988. Pollen harvest by Africanized Apis mellifera and Trigona spinipes in São Paulo botanical and ecological views. Apidologie 19: 1–24.CrossRefGoogle Scholar
  17. Cruz DO, Freitas BM, Silva LA, Silva EMS, Bomfim IGA. 2004. Adaptação e comportamento de pastejo da abelha jandaíra (Melipona subnitida Ducke) em ambiente protegido. Acta Scientiarum. Animal Sciences 26: 293–298.Google Scholar
  18. Cruz DO, Freitas BM, Silva LA, Silva EMS, Bomfim IGA. 2005. Pollination efficiency of the stingless bee Melipona subnitida on greenhouse sweet pepper. Pesquisa Agropecuária Brasileira 40: 1197-1201.CrossRefGoogle Scholar
  19. Ducke A. 1925. Die stachellosen Bienen Brasiliens. Zoologische Jahrbücher Abteilung für Systematik, Geographie und Biologie der Tiere 49: 335-448.Google Scholar
  20. Eltz T, Brühl C, van der Kaars S, Chey VK, Linsenmair KE. 2001a. Pollen foraging and resource partitioning of stingless bees in relation to flowering dynamics in a Southeast Asian tropical rainforest. Insectes Sociaux 48: 273–279.CrossRefGoogle Scholar
  21. Eltz T, Brühl C, Kaars VD, Linsenmair K. 2001b. Assessing stingless bee pollen diet by analysis of garbage pellets : a new method. Apidologie 32: 341–353.CrossRefGoogle Scholar
  22. Felipe-Neto CAL, Pinheiro CGME, Tambosi LR, Imperatriz-Fonseca VL, Jaffé R. 2017. Como a estrutura da paisagem pode afetar a qualidade de mel da abelha jandaíra no semiárido brasileiro? pp 175-182. In Imperatriz-Fonseca VL, Koedam D, Hrncir M eds. A abelha jandaíra no passado, presente e futuro, EdUFERSA; Mossoró, Brasil. 269 pp.Google Scholar
  23. Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, et al. 2013. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339: 1608-1611.CrossRefPubMedGoogle Scholar
  24. Garibaldi LA, Carvalheiro LG, Vaissière BE, Gemmill-Herren B, Hipólito J, Freitas BM, et al. 2016. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351: 388-391.CrossRefPubMedGoogle Scholar
  25. Giannini TC, Acosta AL, Garófalo CA, Saraiva AM, Alves-dos-Santos I, Imperatriz-Fonseca VL. 2012. Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil. Ecological Modelling 244: 127-131.CrossRefGoogle Scholar
  26. Giannini TC, Acosta AL, Silva CI, Oliveira, PEAM, Imperatriz-Fonseca, VL, Saraiva, AM. 2013. Identifying the areas to preserve passion fruit pollination service in Brazilian Tropical Savannas under climate change. Agriculture, Ecosystems & Environment 171: 39–46.CrossRefGoogle Scholar
  27. Giannini TC, Tambosi LR, Acosta AL, Jaffé R, Saraiva AM, Imperatriz-Fonseca VL, Metzger JP. 2015. Safeguarding ecosystem services: A methodological framework to buffer the joint effect of habitat configuration and climate change. PLoS ONE 10: e0129225.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hanley ME, Awbi AJ, Franco M. 2014. Going native? Flower use by bumblebees in English urban gardens. Annals of Botany 113: 1-8.CrossRefGoogle Scholar
  29. Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø. 2009. How does climate warming affect plant-pollinator interactions? Ecology Letters 12: 184-195.CrossRefPubMedGoogle Scholar
  30. Hicks DM, Ouvrard P, Baldock KCR, Baude M, Goddard MA, Kunin WE, Mitschunas N, Memmott J, Morse H, Nikolitsi M, Osgathorpe LM, Potts SG, Robertson KM, Scott AV, Sinclair F, Westbury DB, Stone GN. 2016. Food for pollinators: quantifying the nectar and pollen resources of urban flower meadows. PLoS ONE 11: e0158117.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jaffé R, Pope N, Carvalho AT, Maia UM, Blochtein B, Carvalho CAL, Carvalho-Zilse GA, Freitas BM, Menezes C, Ribeiro MF, Venturieri GC, Imperatriz-Fonseca VL. 2015. Bees for development: Brazilian survey reveals how to optimize stingless beekeeping. PLoS ONE 10: e0121157.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jha S, Burkle L, Kremen C. 2013. Vulnerability of pollination ecosystem services. Climate Vulnerability 4: 117-128.CrossRefGoogle Scholar
  33. Jones GD, Jones SD. 2001. The uses of pollen and its implication for entomology. Neotropical Entomology 30: 341–350.CrossRefGoogle Scholar
  34. Kajobe R. 2007. Botanical sources and sugar concentration of the nectar collected by two stingless bee species in a tropical African rain forest. Apidologie 38:110–121.CrossRefGoogle Scholar
  35. Kaluza BF, Wallace H, Heard TA, Klein, AM, Leonhardt, SD. 2016. Urban gardens promote bee foraging over natural habitats and plantations. Ecology and Evolution 6: 1304–1316.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kearns CA, Inouye DW. 1997. Pollinators, flowering plants, and conservation biology. Bioscience 47: 297–307.CrossRefGoogle Scholar
  37. Koffler S, Menezes C, Menezes PR, Kleinert ADMP, Imperatriz-Fonseca VL, Pope N, Jaffe R. 2015. Temporal variation in honey production by the stingless bee Melipona subnitida (Hymenoptera: Apidae): long-term management reveals its potential as a commercial species in northeastern Brazil. Journal of Economic Entomology108: 858–867.CrossRefPubMedGoogle Scholar
  38. Leal IR, Silva JMC, Tabarelli M, Lacher TE. 2005. Changing the course of biodiversity conservation in the Caatinga of northeastern Brazil. Conservation Biology 19: 701–706.CrossRefGoogle Scholar
  39. Limão AAC. 2015. A influência dos fatores bióticos e abióticos no néctar coletado por Melipona subnitida (Apidae, Meliponini) na Caatinga. Master’s thesis. Universidade Federal Rural do Semi-Árido. 60 pp.Google Scholar
  40. Limão AAC, Maia-Silva C, Silva CI, Imperatriz-Fonseca VL. 2012. Pollen sources used by Melipona subnitida (Apidae, Meliponini) during the dry season in an urbanized landscape in the Brazilian semi-arid region. In Anais do X Encontro sobre Abelhas; Ribeirão Preto, Brasil.Google Scholar
  41. Maia UM, Jaffé R, Carvalho AT, Imperatriz-Fonseca VL. 2015. Meliponicultura no Rio Grande do Norte. Revista Brasileira de Medicina Veterinaria 37: 327–333.Google Scholar
  42. Maia-Silva C. 2013. Adaptações comportamentais de Melipona subnitida (Apidae, Meliponini) às condições ambientais do semiárido brasileiro. PhD thesis Universidade de São Paulo. 132 pp.Google Scholar
  43. Maia-Silva C, Silva CI, Hrncir M, Queiroz RT, Imperatriz-Fonseca VL. 2012. Guia de plantas visitadas por abelhas na Caatinga. Editora Fundação Brasil Cidadão; Fortaleza, Brasil. 191 pp.Google Scholar
  44. Maia-Silva C, Imperatriz-Fonseca VL, Silva CI, Hrncir M. 2014. Environmental windows for foraging activity in stingless bees, Melipona subnitida Ducke and Melipona quadrifasciata Lepeletier (Hymenoptera: Apidae: Meliponini). Sociobiology 61: 378–385.CrossRefGoogle Scholar
  45. Maia-Silva C, Hrncir M, Silva CI, Imperatriz-Fonseca VL. 2015a. Survival strategies of stingless bees (Melipona subnitida) in an unpredictable environment, the Brazilian tropical dry forest. Apidologie 46: 631-643.CrossRefGoogle Scholar
  46. Maia-Silva C, Silva C, Souza DA, Aleixo, K P, Imperatriz-Fonseca, V L, Hrncir M 2015b. Climate warming will increase direct competition for food among stingless bees. In XXXIII Encontro Anual de Etolologia, Belém, Brasil.Google Scholar
  47. Maia-Silva C, Hrncir M, Imperatriz-Fonseca VL, Schorkopf DLP. 2016. Stingless bees (Melipona subnitida) adjust brood production rather than foraging activity in response to changes in pollen stores. Journal of Comparative Physiology A. 202: 723-732.CrossRefGoogle Scholar
  48. Malagodi-Braga KS, Kleinert AMP. 2009. Comparative analysis of two sampling techniques for pollen gathered by Nannotrigona testaceicornis Lepeletier (Apidae, Meliponini). Genetics and Molecular Research 8: 596–606.CrossRefPubMedGoogle Scholar
  49. Martins CF, Cortopassi-Laurino M, Koedam D, Imperatriz–Fonseca VL. 2004. Tree species used for nidification by stingless bees in the Brazilian Caatinga (Seridó, PB; João Câmara, RN). Biota Neotropica 4: 1–8.CrossRefGoogle Scholar
  50. Memmott J, Craze PG, Waser NM, Price MV. 2007. Global warming and the disruption of plant–pollinator interactions. Ecology Letters 10: 710-717.CrossRefPubMedGoogle Scholar
  51. Menezes C, Vollet-Neto A, Imperatriz-Fonseca VL. 2012. A method for harvesting unfermented pollen from stingless bees (Hymenoptera, Apidae, Meliponini). Journal of Apicultural Research 51: 240–244.CrossRefGoogle Scholar
  52. Menezes C, Vollet-Neto A, Contrera FAFL, Venturieri GC, Imperatriz-Fonseca VL. 2013. The role of useful microorganisms to stingless bees and stingless beekeeping. pp. 153-171. In Vit P, Pedro SM, Roubik DW eds. Pot-Honey: a Legacy of Stingless Bees. Springer; New York, USA. 654 pp.Google Scholar
  53. Menz MHM, Phillips RD, Winfree R, Kremen C, Aizen MA, Johnson SD, Dixon KW. 2011. Reconnecting plants and pollinators : challenges in the restoration of pollination mutualisms. Trends in Plant Science 16: 4–12.CrossRefPubMedGoogle Scholar
  54. Michener CD. 1974. The Social Behavior of the Bees. Cambridge, Harvard University Press, USA. 418 pp.Google Scholar
  55. Morandin LA, Kremen C. 2013a. Bee preference for native versus exotic plants in restored agricultural hedgerows. Restoration Ecology 21: 26–32.CrossRefGoogle Scholar
  56. Morandin LA, Kremen C. 2013b. Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecological Applications 23: 829–839.CrossRefPubMedGoogle Scholar
  57. Murray TE, Kuhlmann M, Potts SG. 2009. Conservation ecology of bees: populations, species and communities. Apidologie 40: 211–236.CrossRefGoogle Scholar
  58. Nunes-Silva P, Hrncir M, Imperatriz-Fonseca VL. 2010. A polinização por vibração. Oecologia Australis 14: 140-151.CrossRefGoogle Scholar
  59. Pereira JS. 2015. Plantas importantes para a manutenção da abelha jandaíra (Melipona subnitida) em paisagem urbana do semiárido brasileiro. Bachelor's thesis. Universidade Federal Rural do Semi-Árido. 36 pp.Google Scholar
  60. Pereira JS, Limão AAC, Silva AGM, Maia-Silva C, Hrncir M. 2014. Forrageamento de pólen no semiárido brasileiro: plantas visitadas pela abelha jandaíra (Meliponini, Melipona subnitida) em um ambiente urbano. In XXXII Encontro Anual de Etologia e V Simpósio Latino-americano de Etologia; Mossoró, Brasil.Google Scholar
  61. Pereira JS, Silva AGM, Sá-Filho GF, Hrncir M, Maia-Silva C. 2015. Which environmental factors influence the pollen collection by Melipona subnitida (Apidae, Meliponini) in an urban landscape in the Brazilian semiarid region? In Anais do XI Encontro sobre Abelhas; Ribeirão Preto, Brasil.Google Scholar
  62. Pinto RS, Albuquerque PMC, Rêgo MMC. 2014. Pollen analysis of food pots stored by Melipona subnitida Ducke (Hymenoptera: Apidae) in a restinga area. Sociobiology 61: 461–469.CrossRefGoogle Scholar
  63. Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. 2010. Global pollinator declines: trends, impacts and drivers. Trends in Ecology and Evolution 25: 345–353.CrossRefPubMedGoogle Scholar
  64. Quirino Z, Machado I. 2014. Pollination syndromes in a Caatinga plant community in northeastern Brazil: seasonal availability of floral resources in different plant growth habits. Brazilian Journal of Biology 74: 62–71.CrossRefGoogle Scholar
  65. Ramalho M. 2004. Stingless bees and mass flowering trees in the canopy of Atlantic Forest: a tight relationship. Acta Botanica Brasilica 18: 37–47.CrossRefGoogle Scholar
  66. Ramalho M, Silva MD, Carvalho CALD. 2007. Dinâmica de uso de fontes de pólen por Melipona scutellaris Latreille (Hymenoptera: Apidae): uma análise comparativa com Apis mellifera L. (Hymenoptera: Apidae), no Domínio Tropical Atlântico. Neotropical Entomology 36: 38-45.CrossRefPubMedGoogle Scholar
  67. Reis AMS, Araújo EL, Ferraz EMN, Moura AN. 2006. Inter-annual variations in the floristic and population structure of an herbaceous community of “Caatinga” vegetation in Pernambuco, Brazil. Revista Brasileira de Botânica 29: 497–508.Google Scholar
  68. Rosso-Londoño J, Imperatriz-Fonseca VL. 2017. “Abelha não serve só pra botar mel, não!”: meleiros e conflito socioambiental na Caatinga potiguar. pp 101-108. In Imperatriz-Fonseca VL, Koedam D, Hrncir M eds. A abelha jandaíra no passado, presente e futuro, EdUFERSA; Mossoró, Brasil. 269 pp.Google Scholar
  69. Roubik DW. 1982. Seasonality in colony food storage brood production and adult survivorship: studies of Melipona in tropical forest (Hymenoptera: Apidae). Journal of the Kansas Entomological Society 55: 789-800.Google Scholar
  70. Roubik DW, Moreno JE, Vergara C, Wittmann D. 1986. Sporadic food competition with the African honey bee: projected impact on Neotropical social bees. Journal of Tropical Ecology 2: 97–111.CrossRefGoogle Scholar
  71. Roubik DW. 1989. Ecology and Natural History of Tropical Bees. Cambridge University Press, Cambridge, USA. 514 pp.CrossRefGoogle Scholar
  72. Roulston TAH, Goodell K. 2011. The role of resources and risks in regulating wild bee populations. Annual Review of Entomology 56: 293-312CrossRefPubMedGoogle Scholar
  73. Santos JMFF, Santos DM, Lopes CGR, Silva KA, Sampaio EVSB, Araújo EL. 2013. Natural regeneration of the herbaceous community in a semiarid region in Northeastern Brazil. Environmental Monitoring and Assessment 185: 8287–8302.CrossRefPubMedGoogle Scholar
  74. Schweiger O, Settele J, Kudrna O, Klotz S, Kühn I. 2008. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89: 3472-3479.CrossRefPubMedGoogle Scholar
  75. Shepherd M, Buchmann S, Vaughan M, Black S. 2003. The Pollinator Conservation Handbook. The Xerces Society, Portland. 145 pp.Google Scholar
  76. Silva CI, Maia-Silva C, Ribeiro FA, Bauermann SG. 2012. O uso da palinologia como ferramenta em estudos sobre ecologia e conservação de polinizadores no Brasil. pp. 369–383. In Imperatriz-Fonseca V, Canhos D, Alves D, Saraiva A eds. Polinizadores no Brasil - Contribuição e Perspectivas para a Biodiversidade, Uso Sustentável, Conservação e Serviços Ambientais. EDUSP; São Paulo, Brasil. 488 pp.Google Scholar
  77. Silva CI, Imperatriz-Fonseca VL, Groppo M, Bauermann SG, Saraiva, AA, Queiroz EP, Evaldt ACP, Aleixo KP, Castro JP, Castro MMN, Faria LB, Caliman MJF, Wolff JL, Neto HFP, Garófalo CA. 2014. Catálogo Polínico das Plantas Usadas por Abelhas no Campus da USP de Ribeirão Preto. Holos; Ribeirão Preto, Brasil. 153 pp.Google Scholar
  78. Silveira F. 1991. Influence of pollen grain volume the estimation of the relative importance of its source to bees. Apidologie 22: 495–502.CrossRefGoogle Scholar
  79. Sommeijer MJ, Rooy GA, Punt W, Bruijn LLM. 1983. A comparative study of foraging behavior and pollen resources of various stingless bees (Hym., Meliponinae) and honeybees (Hym., Apinae) in Trinidad, West-Indies. Apidologie 14: 205–224.CrossRefGoogle Scholar
  80. Todd FE, Vansell GH. 1942. Pollen grains in nectar and honey. Journal of Economic Entomology 35: 728-731.CrossRefGoogle Scholar
  81. Tylianakis JM, Didham RK, Bascompte J, Wardle DA. 2008. Global change and species interactions in terrestrial ecosystems. Ecology Letters 11: 1351-1363.CrossRefPubMedGoogle Scholar
  82. Valiente-Banuet A, Aizen MA, Alcántara JM, Arroyo J, Cocucci A, Galetti M, García MB, García D, Gómez JM, Jordano P, Medel R, Navarro L, Obeso JR, Oviedo R, Ramírez N, Rey PJ, Traveset A, Verdú M, Zamora R. 2015. Beyond species loss: the extinction of ecological interactions in a changing world. Functional Ecology 29: 299-307.CrossRefGoogle Scholar
  83. Van der Putten WH, Macel M, Visser ME. 2010. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B 365: 2025-2034.CrossRefGoogle Scholar
  84. Wilms W, Imperatriz-Fonseca VL, Engels W. 1996. Resource partitioning between highly eusocial bees and possible impact of the introduced Africanized honey bee on native stingless bees in the Brazilian Atlantic. Studies on Neotropical Fauna and Environment 31: 137–151.CrossRefGoogle Scholar
  85. Wilms W, Wiechers B. 1997. Floral resource partitioning between native Melipona bees and the introduced Africanized honey bee in the Brazilian Atlantic rain forest. Apidologie 28: 339–355.CrossRefGoogle Scholar
  86. Zanella FCV. 2000. The bees of the Caatinga (Hymenoptera, Apoidea, Apiformes): a species list and comparative notes regarding their distribution. Apidologie 31: 579–592.CrossRefGoogle Scholar
  87. Zarnetske PL, Skelly DK, Urban MC. 2012. Biotic multipliers of climate change. Science 336: 1516-1518.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Camila Maia-Silva
    • 1
  • Amanda Aparecida Castro Limão
    • 1
  • Michael Hrncir
    • 1
  • Jaciara da Silva Pereira
    • 1
  • Vera Lucia Imperatriz-Fonseca
    • 1
    • 2
  1. 1.Departamento de Ciências AnimaisUniversidade Federal Rural do Semi-ÁridoMossoróBrazil
  2. 2.Instituto Tecnológico ValeBelémBrazil

Personalised recommendations