The Stingless Honey Bees (Apidae, Apinae: Meliponini) in Panama and Pollination Ecology from Pollen Analysis

  • David W. RoubikEmail author
  • Jorge Enrique Moreno Patiño


Since 1979, meliponine nest stores of honey, pollen, or pollen fecal deposits were collected with the goal of knowing important floral resources. Given the paucity of data on food importance to perennial bee populations, such studies, in natural habitat, should yield insight. A reference collection of >683 genera and 1270 species and key to pollen were made for Barro Colorado Island, in the Panama Canal. Pollen gathered by Melipona, Scaura, Cephalotrigona, and Tetragona with multiple nests shows that of the 180 resources used, only 30 were used prominently. Cephalotrigona, which never eject pollen feces from the nest, and a Trigona, which builds its nest from fecal pollen, provide comprehensive data. Combined with the other taxa, there was diverse specialization among bee species. Pollen specialist bees included “palm bees” and “grass bees.” Melipona panamica and Tetragonisca angustula had many palms, melastomes, or legumes in their diet, including trees, shrubs, herbs, and vines. The 53 unisexual local tree genera—one-third of all those present by the Panama Canal—reveal difficulty in assessing pollination ecology from bee nest pollen. When harvesting pollen of unisexual flowers, including many palms, bees can pollinate little. Our five principal bee genera/species harvested prominently, over time, from Paspalum, Trophis, Piper, Luehea, Alchornea, Attalea, Iriartea, or Pterocarpus. Melipona had as many as 79 pollen species in the nest, but Cephalotrigona used only 25 pollen species maximum, and there was only modest intercolony similarity—0.43 Sorensen index. Moreover, three co-occurring bee genera with multiple colony samples were, on average, more similar to each other than to their own species, 0.61–0.64 Sorensen index, but ranges from small samples were large. Pollen counts were often invalid indicators of plant importance to bees, as were exemplar nests or single-nest samples. Combined with bee and plant reference collections and taxonomic thoroughness, palynology aids ecological studies, and stingless honey bees, like the honeybee Apis, are found to be generalists that specialize. Whether each meliponine specializes on different plants in mature or regenerating forests remains to be elucidated.


  1. Aguilar I, Herrera E, Zamora G. 2013. Stingless bees of Costa Rica. pp. 113–124 In: Vit P, Pedro SRM, Roubik DW, eds. Pot–honey: A Legacy of Stingless Bees. Springer; New York. 654 pp.Google Scholar
  2. Allen PH, Allen DO. 1977. The Rain Forest of Golfo Dulce (2nd Edn.). Stanford University Press; Stanford. 417 pp.Google Scholar
  3. Ayala R. 1999. Revisión de las abejas sin aguijón de México (Hymenoptera: Apidae: Meliponini). Folia Entomológica Mexicana 106: 1–123.Google Scholar
  4. Camargo JMF. 2013. Historical biogeography of the Meliponini (Hymenoptera, Apidae, Apinae) of the Neotropical region. pp. 19–34. In: Vit P, Pedro SRM, Roubik DW, eds. Pot-Honey: A Legacy of Stingless Bees. Springer; New York. 654 pp.Google Scholar
  5. Camargo JMF, Pedro SRM. 2008. Revisão das espécies de Melipona do grupo fuliginosa (Hymenoptera, Apoidea, Apidae, Meliponini). Revista Brasileira de Entomologia 52 (3). CrossRefGoogle Scholar
  6. Camargo JMF, Pedro SRM. 2007. Meliponini Lepeletier, 1836. In Moure JS, Urban D, Melo, GAR, eds. Catalogue of bees (Hymenoptera, Apoidea) in the Neotropical region – online version. Available at:
  7. Camargo JMF, Roubik DW. 1991. Systematics and bionomics of the apoid obligate necrophages: the Trigona hypogea group (Hymenoptera: Apidae; Meliponinae). Biological Journal of the Linnean Society 44: 13–39.CrossRefGoogle Scholar
  8. Candanedo I, Samudio R. 2005. Construyendo un mecanismo para medir el éxito de la conservación en el alto Chagres; Dilia Santamaría Espinosa, Panama. 80 pp.Google Scholar
  9. Cane JH, Sipes S. 2006. Characterizing floral specialization by bees: analytical methods and a revised lexicon for oligolecty. pp 99–122 In: Waser NM, Ollerton J, eds. Plant pollinator interactions: from specialization to generalization. University of Chicago Press, USA. 445 pp.Google Scholar
  10. Cockerell TDA. 1913. Meliponine bees from Central America. Psyche 20: 10–14.CrossRefGoogle Scholar
  11. Croat TC. 1978. The flora of Barro Colorado Island. Missouri Botanical Garden, St. Louis, MO, USA. 958 pp.Google Scholar
  12. D’Arcy WG, Correa, MDA, eds. 1985. The botany and natural history of Panama (La botánica e historia natural de Panamá). Monographs in Systematic Botany from the Missouri Botanical Garden. Vol. 10. 455 pp.Google Scholar
  13. Gonzalez VH, Roubik DW. 2008. Especies nuevas y filogenia de abejas de fuego Oxytrigona (Hymenoptera, Apidae, Meliponini). Acta Zoologica Mexicana 24: 43–71.Google Scholar
  14. Griswold T, Parker FD, Hanson PE. 1995. The bees (Apidae). pp. 650–691 In: Hanson PE, Gauld ID, eds. The Hymenoptera of Costa Rica. Oxford, UK. 893 pp.Google Scholar
  15. Hawkins J, De Vere N, Griffith A, Ford R, Allainguillaume J, Hegarty MJ, Baillie L, Adams-Groom B. 2015. Using DNA Metabarcoding to identify the floral composition of honey: a new tool for investigating honey bee foraging preferences. PLoS One. doi: Scholar
  16. Henderson PA, Southwood TRE. 2016. Ecological methods. 4th Edn. John Wiley and Sons, UK. 643 pp.Google Scholar
  17. Ibáñez A. 2011. Guía botánica del parque nacional Coiba. International Cooperative Biodiversity Groups; Panama. 399 pp.Google Scholar
  18. Laroca S, Lauer S. 1973. Adaptação comportamental de Scaura laitarsis para a coleta de pólen (Hymenoptera, Apoidea). Acta Biológica Paranaense 2: 147–152.CrossRefGoogle Scholar
  19. Michener CD. 1954. Bees of Panamá. Bulletin of the American Museum of Natural History 104: 5–175.Google Scholar
  20. Michener CD. 1974. The Social Behavior of the Bees. A Comparative Study. Belknap Press of Harvard University Press, New York. 404 pp.Google Scholar
  21. Michener CD. 2007. Bees of the World, 2nd Edn. Johns Hopkins University Press: Baltimore. 953 pp.Google Scholar
  22. Michener CD. 2013. The Meliponini. pp. 3–17 In: Vit P, Pedro SRM, Roubik DW, eds. Pot-Honey: A Legacy of Stingless Bees. Springer; New York. 654 pp.Google Scholar
  23. Pedro SRM, Camargo JMF. 1997. A new species of Partamona (Hymenoptera: Apidae) endemic to eastern Panama and notes on P. grandipennis. Revista de Biologia Tropical 44(3) –45(1): 199–208.Google Scholar
  24. Pérez-M RA. 2008. Árboles de los bosques del canal de Panamá. Instituto Smithsonian de Investigaciones Tropicales; Panama. 465 pp.Google Scholar
  25. Richardson RT, Chia-Hua L, Sponsler DB, Quijia JO,Goodell K, Johnson RM. 2015. Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Applications in Plant Sciences 3: 1400066.; Scholar
  26. Roubik DW. 1981. A natural mixed colony of Melipona. Journal of the Kansas Entomological Society 54: 263–268.Google Scholar
  27. Roubik DW. 1982. Obligate necrophagy in a social bee. Science 217: 1059–1060.CrossRefPubMedGoogle Scholar
  28. Roubik DW. 1983. Nest and colony characteristics of stingless bees from Panama. Journal of the Kansas Entomological Society 56: 327–355.Google Scholar
  29. Roubik DW. 1988. An overview of Africanized honey bee populations: reproduction, diet and competition. pp. 45–54. In: Needham G, Page R, Delfinado-Baker M, eds. Proc. Intl. Conf. on Africanized honey bees and bee mites. E. Horwood Ltd., Chichester, UK. 572 pp.Google Scholar
  30. Roubik DW. 1989. Ecology and natural history of tropical bees. Cambridge University Press, New York. 514 pp.CrossRefGoogle Scholar
  31. Roubik DW. 1991. Aspects of Africanized honey bee ecology in tropical America. pp. 147–158 In: Spivak M, Breed MD, Fletcher DJC, eds. The “African” honey bee. Westview Press, Boulder, Colorado. 435 pp.Google Scholar
  32. Roubik DW. 1992a. Stingless bees (Apidae: Meliponinae): a guide to Panamanian and Mesoamerican species and their nests. pp. 495–524. In: Quintero D, Aiello A, eds. Insects in Panama and Mesoamerica: selected studies; Oxford, UK. 692 pp.Google Scholar
  33. Roubik DW. 1992b. Loose niches in tropical communities: Why are there so many trees and so few bees? pp. 327–354 In: Hunter MD, Ohgushi T, Price PW, eds. Resource Distribution and Animal-Plant Interactions. Academic Press, New York. 505 pp.CrossRefGoogle Scholar
  34. Roubik DW. 1993. Direct costs of forest reproduction, bee-cycling and the efficiency of pollination modes. Journal of Bioscience 18: 537–552.CrossRefGoogle Scholar
  35. Roubik DW. 2002. Tropical bee colonies, pollen dispersal and reproductive gene flow in forest trees. pp. 30–40. In: Degen B, Loveless M, Kremer A, eds. Proceedings of the symposium “Modelling and experimental research on genetic processes in tropical and temperate forests”. Documentos de Embrapa Amazonia Oriental, Belém, Brazil. 168 pp.Google Scholar
  36. Roubik DW. 2006. Stingless bee nesting biology. Apidologie 37: 124–143.CrossRefGoogle Scholar
  37. Roubik DW. 2009. Ecological impact on native bees by the invasive Africanized honey bee. Acta Biologica Colombiana 14: 115–124.Google Scholar
  38. Roubik DW. 2013. Why they keep changing the names of our stingless bees (Hymenoptera: Apidae; Meliponini). A little history and guide to taxonomy. pp. 1–7. In Vit P, Roubik, DW, eds. Stingless bees process honey and pollen in cerumen pots. SABER-ULA, Universidad de Los Andes; Mérida, Venezuela.
  39. Roubik DW. ed. 1995. Pollination of Cultivated Plants in the Tropics. Technical Bulletin 118; Food and Agriculture Organization of the United Nations, Rome. 269 pp.Google Scholar
  40. Roubik DW. ed. In press. The Pollination of Cultivated Plants. A Compendium for Practitioners. Food and Agriculture Organization of the United Nations, Rome.Google Scholar
  41. Roubik DW, Camargo JMF. 2012. The Panama microplate, island studies and relictual species of Melipona (Melikerria) (Hymenoptera: Apidae: Meliponini). Systematic Entomology 37: 189–199.CrossRefGoogle Scholar
  42. Roubik DW, Lobo JA, Camargo JMF. 1997. New endemic stingless bees genus from Central American cloudforests (Hymenoptera: Apidae; Meliponini). Systematic Entomology 22: 67–80.CrossRefGoogle Scholar
  43. Roubik DW, Moreno JE 1991. Pollen and spores of Barro Colorado Island. Monographs in Systematic Botany from the Missouri Botanical Garden. No. 36. 269 pp.Google Scholar
  44. Roubik DW, Moreno JE, Vergara C, Wittmann D. 1986. Sporadic food competition with the African honey bee: projected impact on Neotropical social bees. Journal of Tropical Ecology 2: 97–111.CrossRefGoogle Scholar
  45. Roubik DW, Moreno JE. 1990. Social bees and palm trees: what do pollen diets tell us? pp. 427–428. In: Veeresh GK, Mallik B., Viraktamath CA, eds. Social Insects and the Environment; Oxford and IBH Publishing Co., New Delhi. 765 pp.Google Scholar
  46. Roubik DW, Moreno JE. 2000. Generalization and specialization by stingless bees. pp. 112–118. In: Proceedings of the Sixth International Bee Research Conference on Tropical Bees. International Bee Research Assocition, Cardiff, UK. 212 pp.Google Scholar
  47. Roubik DW, Moreno JE. 2009. Trigona corvina: An ecological study based on unusual nest structure and pollen analysis. Psyche. doi: 10.1155/2009/268756.CrossRefGoogle Scholar
  48. Roubik DW, Moreno JE. 2013. How to be a bee-botanist using pollen spectra. pp. 295–314. In: Vit P, Pedro SRM, Roubik DW, eds. Pot–honey: a legacy of stingless bees. Springer; New York. 654 pp.Google Scholar
  49. Roubik DW, Villanueva-Gutiérrez, R. 2009. Invasive Africanized honey bee impact on native solitary bees: a pollen resource and trap nest analysis. Biological Journal of the Linnean Society 98: 152–160.CrossRefGoogle Scholar
  50. Roubik DW, Wolda H. 2000. Male and female bee dynamics in a lowland tropical forest. pp. 167–174. In: Proceedings of the Sixth International Bee Research Conference on Tropical Bees: International Bee Research Association, Cardiff, UK. 226 pp.Google Scholar
  51. Schwarz HF. 1932. Stingless bees in combat: observations on Trigona pallida Latreille on Barro Colorado Island. Natural History, New York. 32: 552–553.Google Scholar
  52. Schwarz HF. 1934. The social bees (Meliponidae) of Barro Colorado Island, Canal Zone. American Museum Novitates. No. 731. pp. 1–23.Google Scholar
  53. Schwarz HF. 1948. Stingless bees of the Western Hemisphere. Lestrimelitta and the following subgenera of Trigona: Trigona, Paratrigona, Schwarziana, Parapartamona, Cephalotrigona, Oxytrigona, Scaura, and Mourella. Bulletin of the American Museum of Natural History, Vol. 90: 546 pp. + xvii.Google Scholar
  54. Schwarz HF. 1951. New stingless bees (Meliponidae) from Panama and the Canal Zone. Nuevas abejas jicotes (Meliponidae) de Panamá y la Zona del Canal. American Museum Novitates. 1505: 1–16.Google Scholar
  55. Sommeijer MJ, de Rooy GA, Punt W, de Bruijn LLM. 1983. A comparative study of foraging behavior and pollen resources of various stingless bees (Hym., Meliponinae) and honey bees (Hym., Apinae) in Trinidad, West-Indies. Apidologie 14: 205–224.CrossRefGoogle Scholar
  56. Villanueva-Gutiérrez R, Roubik DW. 2004. Why are African honey bees and not European bees invasive? Pollen diet diversity in community experiments. Apidologie 35: 481–491.CrossRefGoogle Scholar
  57. Villanueva-Gutiérrez R, Roubik DW. 2016. More than protein? Bee-flower interactions and effects of disturbance regimes revealed by rare pollen in bee nests. Arthropod-Plant Interactions doi: Scholar
  58. Vit P, Pedro SRM, Roubik DW, eds. 2013. Pot-Honey: A Legacy of Stingless Bees. Springer; New York. 647 pp.Google Scholar
  59. Vit P, Roubik DW, eds. 2013. Stingless Bees Process Honey and Pollen in Cerumen Pots. SABER-ULA, Universidad de Los Andes; Mérida, Venezuela.
  60. Wolda H, Roubik DW. 1986. Nocturnal bee abundance and seasonal bee activity in a Panamanian forest. Ecology 67: 426–433.CrossRefGoogle Scholar
  61. Yurrita CA, Ortega-Huerta MA, Ayala R. 2016. Distributional analysis of Melipona stingless bees (Apidae: Meliponini) in Central America and Mexico: setting baseline information for their conservation. Apidologie DOI:  10.1007/s13592-016-0469-z.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David W. Roubik
    • 1
    Email author
  • Jorge Enrique Moreno Patiño
    • 2
  1. 1.Smithsonian Tropical Research InstituteBalboa, AnconRepublic of Panama
  2. 2.Smithsonian Tropical Research Institute, Calle PortobeloBalboa, AnconRepublic of Panama

Personalised recommendations