Antibacterial Activity of Ethanolic Extracts of Pot-Pollen Produced by Eight Meliponine Species from Venezuela

  • Miguel Sulbarán-Mora
  • Elizabeth Pérez-Pérez
  • Patricia VitEmail author


Fresh Venezuelan pot-pollen from Apure, Amazonas, Bolívar, and Mérida produced by eight meliponine species of Frieseomelitta, Melipona, and Tetragonisca was characterized. The antibacterial activity of pot-pollen ethanolic extracts was measured in Gram positive (Bacillus subtilis, Staphylococcus aureus) and Gram negative bacteria (Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa), using agar well diffusion and minimal inhibitory concentration (MIC) methods. In both methods, all pot-pollen ethanolic extracts were active against at least four of the bacterial strains tested, showing an antibacterial activity related to stingless bee species. Melipona favosa, Melipona lateralis kangarumensis, Melipona paraensis, and Tetragonisca angustula pot-pollen ethanolic extracts had the widest inhibition halos and the lowest MIC values (between 2.5% and 5.0%), indicating the highest antibacterial activities. Differences in antibacterial activities of pot-pollen produced by the eight species of stingless bees were possibly due to difference in botanical and geographical origin. Escherichia coli was the bacterium more resistant to pot-pollen extracts – ten samples of Melipona eburnea, Melipona paraensis, and Tetragonisca angustula. The antibacterial activity of ethanolic extracts of pot-pollen produced by eight stingless bee species of several regions of Venezuela increases the added value of these products for nutritional and functional uses.



To the memory of Professor João MF Camargo, Biology Departement, Universidade de São Paulo, Ribeirão Preto, Brazil, for the identification of the Venezuelan stingless bees. To stingless bee keepers from southern Venezuela to provide their pot-pollen. To project FA-127-93B from Council for the Scientific, Humanistic and Technological Development at Universidad de Los Andes, Mérida, Venezuela, for supporting field work needed to collect the pot-pollen in Venezuela. To the support of ZG-AVA-FA-01-98-01 from the Council of Development of Scientific, Humanistic, Technological and Artistic, at Universidad de Los Andes, to the Group Apitherapy and Bioactivity. To referees for their timely comments. To Dr. D.W. Roubik for the careful English proofreading.


  1. Andrews JM. 2001. Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy 48: 5–16.CrossRefPubMedGoogle Scholar
  2. Bárbara MS, Machado CS, Sodré Gda S, Dias LG, Estevinho LM, de Carvalho CA. 2015. Microbiological assessment, nutritional characterization and phenolic compounds of bee pollen from Melipona mandacaia Smith, 1983. Molecules 20: 12525-12544.CrossRefPubMedGoogle Scholar
  3. Basim E, Basim HS, Özcan M. 2006. Antibacterial activities of Turkish pollen and propolis extracts against plant bacterial pathogens. Journal of Food Engeniering 77: 992–996.CrossRefGoogle Scholar
  4. Bauer AW, Kirby WM, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by standardized single disk method. American Journal of Clinical Pathology 45: 493-496.CrossRefPubMedGoogle Scholar
  5. Boorn KL, Khor YY, Sweetman E, Tan F, Heard TA, Hammer KA. 2010. Antimicrobial activity of honey from the stingless bee Trigona carbonaria determined by agar diffusion, agar dilution, broth microdilution and time-kill methodology Journal of Applied Microbiology 108: 1534-1543.CrossRefPubMedGoogle Scholar
  6. Campos M, Cunha A, Markham K. 1998. Inhibition of virulence of Pseudomonas aeruginosa cultures, by flavonoids isolated from bee-pollen: Possible structure-activity relationships. pp. In: Polyphenol Communications 98. Proceedings of the XIX International Conference on Polyphenols, Lille, France, 1–4 September. Groupe Polyphenols; Bordeaux, France. pp.Google Scholar
  7. Campos MG, Frigerio C, Lopes J, Bogdanov S. 2010. What is the future of Bee-Pollen? Journal of ApiProduct and ApiMedical Science 2: 131–144.CrossRefGoogle Scholar
  8. Carpes ST, Begnini R, Alencar SMD, Masson ML. 2007. Study of preparations of bee pollen extracts, antioxidant and antibacterial activity. Ciência e Agrotecnologia 31: 1818–1825.CrossRefGoogle Scholar
  9. Clinical and Laboratory Standards Institute. 2009. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. CLSI document M07-A8, Eighth edition, Wayne, Pennsylvania, USA. pp. 12-45.Google Scholar
  10. da Cunha MG, Franchin M, de Carvalho Galvão LC, de Ruiz AL, de Carvalho JE, Ikegaki M, de Alencar SM, Koo H, Rosalen PL. 2013. Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis BMC Complementary and Alternative Medicine 23: 1-9.Google Scholar
  11. Denisow B, Denisow-Pietrzyk M. 2016. Biological and therapeutic properties of bee pollen: a review. Journal of the Science of Food and Agriculture 96: 4303-4309.CrossRefPubMedGoogle Scholar
  12. Eraslan G, Kanbur M, Silici S, Liman BC, Altinordulu S, Sarica ZS. 2009. Evaluation of protective effect of bee pollen against propoxur toxicity in rat. Ecotoxicology and Environmental Safety 72: 931–937.CrossRefPubMedGoogle Scholar
  13. Farnesi AP, Aquino-Ferreira R, De Jong D, Bastos JK, Soares AE. 2009. Effects of stingless bee and honey bee propolis on four species of bacteria. Genetics and Molecular Research 8: 635-640.CrossRefPubMedGoogle Scholar
  14. Fatrcová-Šramková K, Nôžková J, Máriássyová M, Kačániová M. 2016. Biologically active antimicrobial and antioxidant substances in the Helianthus annuus L. bee pollen. Journal of Environmental Science and Health B 51: 176-181.CrossRefGoogle Scholar
  15. Grajek W. 2007. Antioxidants in Food. WNT: Warsaw, Poland. pp. 258–259.Google Scholar
  16. Graikou K, Kapeta S, Aligiannis N, Sotiroudis G, Chondrogianni N, Gonos E, Chinou I. 2011. Chemical analysis of Greek pollen - Antioxidant, antimicrobial and proteasome activation properties. Chemistry Central Journal 5: 33-41.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hamamoto R, Ishiyama K, Yamaguchi M. 2006. Inhibitory effects of bee pollen Cistus ladaniferus extract on bone resorption in femoral tissues and osteoclast-like cell formation in bone marrow cells in vitro. Journal of Health Science 52: 268–275.CrossRefGoogle Scholar
  18. Haro A, López-Aliaga I, Lisbona F, Barrionuevo M, Alférez MJ, Campos MS. 2000. Beneficial effect of pollen and/or propolis on the metabolism of iron, calcium, phosphorus, and magnesium in rats with nutritional ferropenic anemia. Journal of Agricultural and Food Chemistry 48: 5715–5722.CrossRefPubMedGoogle Scholar
  19. Kacániová M, Vuković N, Chlebo R, Haščík P, Rovná K, Cubon J, Dżugan M, Pasternernakiewicz A. 2012. The antimicrobial activity of honey, bee pollen loads and beeswax from Slovakia. Archives of Biological Science 64: 927-934.CrossRefGoogle Scholar
  20. Knazovicka V, Melich M, Kacaniova M, Fikselova M, Hascik P, Chlebo R. 2009. Antimicrobial activity of selected bee products. Acta Fytotechnica et Zootechnica 12: 280–285.Google Scholar
  21. Leja M, Mareczek A, Wyżgolik G, Klepacz-Baniak J, Czekońska K. 2007. Antioxidative properties of bee pollen in selected plant species. Food Chemistry 100: 237–240.CrossRefGoogle Scholar
  22. Li F, Yuan Q, Rashid F. 2009. Isolation, purification and immunobiological activity of a new water-soluble bee pollen polysaccharide from Crataegus pinnatifida Bge. Carbohydrate Polymers 78: 80–88.CrossRefGoogle Scholar
  23. Liberio SA, Pereira AL, Dutra RP, Reis AS, Araújo MJ, Mattar NS, Silva LA, Ribeiro MN, Nascimento FR, Guerra RN, Monteiro-Neto V. 2011. Antimicrobial activity against oral pathogens and immunomodulatory effects and toxicity of geopropolis produced by the stingless bee Melipona fasciculata Smith BMC Complementary and Alternative Medicine 108: 12-33.Google Scholar
  24. Massaro CF, Katouli M, Grkovic T, Vu H, Quinn RJ, Heard TA, Carvalho C, Manley-Harris M, Wallace HM, Brooks P. 2014. Anti-staphylococcal activity of C-methyl flavanones from propolis of Australian stingless bees (Tetragonula carbonaria) and fruit resins of Corymbia torelliana (Myrtaceae) Fitoterapia 95: 247-257.CrossRefPubMedGoogle Scholar
  25. Michener CD. 2013. The Meliponini. pp. 3-17. In: Vit P, Pedro SRM, Roubik D. Pot-honey. A legacy of stingless bees. Springer, New York, USA. 654 pp.Google Scholar
  26. Monserrate Y. 2015. Valoración in vitro del potencial antimicrobiano de extractos etanólicos de polen de Apis mellifera y de Tetragonisca angustula, en busca de posibles usos terapéuticos. Universidad Nacional de Colombia, Facultad de Medicina Veterinaria y de Zootecnia Bogotá, Colombia. pp 25-65.Google Scholar
  27. Nishio EK, Ribeiro JM, Oliveira AG, Andrade CG, Proni EA, Kobayashi RK, Nakazato G. 2016. Antibacterial synergic effect of honey from two stingless bees: Scaptotrigona bipunctata Lepeletier, 1836, and S. postica Latreille, 1807. Scientific Reports doi:  10.1038/srep21641.
  28. Nogueira C, Iglesias A, Feás X, Estevinho LM. 2012. Commercial bee pollen with different geographical origins: A comprehensive approach. International Journal of Molecular Science 13: 11173–11187.CrossRefGoogle Scholar
  29. Olczyk P, Koprowski R, Kaźmierczak J, Mencner L, Wojtyczka R, Stojko J, Olczyk K, Komosinska-Vassev K. 2016. Bee pollen as a promising agent in the burn wounds treatment. Evidence-Based Complementary and Alternative Medicine 2016. doi:  10.1155/2016/8473937.CrossRefGoogle Scholar
  30. Patton T, Barrett J, Brennan J, Moran N. 2006. Use of spectrophotometric bioassay for determination of microbial sensitivity to manuka honey. Journal of Microbiological Methods 64: 84–95.CrossRefPubMedGoogle Scholar
  31. Pimentel RB, da Costa CA, Albuquerque PM, Junior SD. 2013. Antimicrobial activity and rutin identification of honey produced by the stingless bee Melipona compressipes manaosensis and commercial honey BMC Complementary and Alternative Medicine 13: 1-13.CrossRefGoogle Scholar
  32. Tan HT, Rahman RA, Gan SH, Halim AS, Hassan SA, Sulaiman SA, Kirnpal-Kaur B. 2009. The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey. Complementary and Alternative Medicine 9: 34-39.CrossRefPubMedGoogle Scholar
  33. Tichy J, Novak J. 2000. Detection of antimicrobials in bee products with activity against viridans streptococci. Journal of Alternative and Complementary Medicine 6: 383–389.CrossRefPubMedGoogle Scholar
  34. Vit P, Santiago B, Pedro SRM, Perez-Perez E, Peña-Vera M. 2016. Chemical and bioactive characterization of pot-pollen produced by Melipona and Scaptotrigona stingless bees from Paria Grande, Amazonas State, Venezuela. Emirates Journal of Food and Agriculture 28: 78-84.CrossRefGoogle Scholar
  35. Wu YD, Lou YJ. 2007. A steroid fraction of chloroform extract from bee pollen of Brassica campestris induces apoptosis in human prostate cancer PC-3 cells. Phytotherapy Research 21: 1087–1091.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Miguel Sulbarán-Mora
    • 1
  • Elizabeth Pérez-Pérez
    • 1
  • Patricia Vit
    • 2
    • 3
    Email author
  1. 1.Laboratory of Biotechnological and Molecular Analysis, Faculty of Pharmacy and Bioanalysis, Universidad de Los AndesMéridaVenezuela
  2. 2.Apitherapy and Bioactivity, Food Science DepartmentFaculty of Pharmacy and Bioanalysis, Universidad de Los AndesMéridaVenezuela
  3. 3.Cancer Research Group, Discipline of Biomedical Science, Cumberland Campus C42, The University of SydneyLidcombeAustralia

Personalised recommendations