Advertisement

Bioactivity and Botanical Origin of Austroplebeia and Tetragonula Australian Pot-Pollen

  • Elizabeth Pérez-Pérez
  • Miguel Sulbarán-Mora
  • Ortrud Monika Barth
  • Carmelina Flavia Massaro
  • Patricia Vit
Chapter

Abstract

Antibacterial properties, antioxidant activity, and bioactive components were measured in ethanolic and methanolic extracts of pot-pollen from Australian stingless bees (Meliponini) Austroplebeia australis, Tetragonula carbonaria, and Tetragonula hockingsi. Tetragonula hockingsi pot-pollen presented the highest flavonoid, polyphenol, and protein concentrations in both ethanolic and methanolic extracts. The antioxidant activity was positively correlated with the polyphenol content. All three pot-pollen extracts were active against both Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative bacteria (Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa), with lower minimum inhibitory concentration (MIC) values found in ethanolic extracts than in methanolic extracts. Ethanolic extracts of Tetragonula hockingsi pot-pollen showed the lowest MIC values. A palynological study identified the botanical origin of Australian pot-pollen. We suggest pot-pollen is a food that increases the value of stingless bee products in Australia.

Notes

Acknowledgments

The pot-pollen samples were freshly collected from local stingless beehives and kindly donated by Mr. Robert Luttrell, Highvale, Queensland, Australia. Special thanks to the support of ZG-AVA-FA-01-98-01 from the Council of Development of Scientific, Humanistic, Technological and Artistic, at Universidad de Los Andes; to Dr. F. Huq for sending pot-pollen from Australia to Brazil for palynological analysis; to Massimo Vit for his hospitality during two short stages of P. Vit at USYD in Sydney; and to the National Counsel of Technological and Scientific Development “Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq” for a research fellowship. Dr. DW Roubik carefully commented and improved the manuscript.

References

  1. Almeida-Muradian L, Pamplona LC, Coimbra S, Barth OM. 2005. Chemical composition and botanical evaluation of dried bee pollen pellets. Journal of Food Composition and Analysis 18: 105-111.CrossRefGoogle Scholar
  2. Altay A, Sagdicoglu Celep G, Yaprak AE, Basköse I, Bozoglu F. 2016. Glassworts as possible anticancer agents against human colorectal adenocarcinoma cells with their nutritive, antioxidant and phytochemical profiles. Chemical Biodiversity Oct 4. doi:  10.1002/cbdv.201600290.CrossRefGoogle Scholar
  3. Andrews JM. 2001. Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy 48: 5–16.CrossRefPubMedGoogle Scholar
  4. Asafova N, Orlov B, Kozin R, 2001. Physiologically Active Bee Products. YA Nikolaev; Nizhny Novgorod University, Russia. 221 pp.Google Scholar
  5. Atwe SU, Ma Y, Gill HS. 2014. Pollen grains for oral vaccination. Journal of Control Release 194: 45–52.CrossRefGoogle Scholar
  6. Azmi WA; Zulqurnain NS; Ghazi R. 2015. Melissopalynology and foraging activity of stingless bees, Lepidotrigona terminata (Hymenoptera: Apidae) from an apiary in Besut, Terengganu. Journal of Sustainability Science and Management 10: 27-35.Google Scholar
  7. Bárbara MS, Machado CS, Sodré GS, Dias LG, Estevinho LM, Carvalho CAL. 2008. Microbiological assessment, nutritional characterization and phenolic compounds of bee pollen from Melipona mandacaia Smith, 1983. Molecules. 20: 12525-12544.CrossRefGoogle Scholar
  8. Bárbara MS, Machado CS, Sodré GS, Dias LG, Estevinho LM, de Carvalho CA. 2015. Microbiological assessment, nutritional characterization and phenolic compounds of bee pollen from Melipona mandacaia Smith, 1983. Molecules 20: 12525-12544.CrossRefPubMedGoogle Scholar
  9. Barth OM. 2004. Melissopalynology in Brazil: a review of pollen analysis of honeys, propolis and pollen loads of bees. Sciencia Agricola 61: 342-350.CrossRefGoogle Scholar
  10. Barth OM, Barros MA, Freitas FO. 2009. Análise palinológica em amostras arqueológicas de geoprópolis do vale do rio Peruaçu, Januária, Minas Gerais, Brasil. Arquivos do Museu de História Natural e Jardim Botânico, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 19: 277-290.Google Scholar
  11. Bartra J, Sastre J, del Cuvillo A, Montoro J, Jáuregui I, Dávila I, Ferrer M, Mullol J, Valero A. 2009. From polinosis to digestive allergy. Journal of Investigative Allergology and Clinical Immunology 19: 3-10.Google Scholar
  12. Basim E, Basim HS, Özcan M. 2006. Antibacterial activities of Turkish pollen and propolis extracts against plant bacterial pathogens. Journal of Food Engeniering 77: 992–996.CrossRefGoogle Scholar
  13. Bauer AW, Kirby WM, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by standardized single disk method. American Journal of Clinical Pathology 45: 493-496.CrossRefPubMedGoogle Scholar
  14. Bazlen K. 2000. Charakterisierung von Honigen stachelloser Bienen aus Brasilien. Thesis. Faculty of Biology, Eberhard-Karl University of Tübingen. 141 pp.Google Scholar
  15. Brudzynski K, Abubaker K, Miotto D. 2012. Unraveling a mechanism of honey antibacterial action: polyphenol/H2O2-induced oxidative effect on bacterial cell growth and on DNA degradation. Food Chemistry 133: 329-336.CrossRefPubMedGoogle Scholar
  16. Callejo A, Sanchís ME, Armentia A, Moneoa I, Fernández A. 2002. A new pollen–fruit cross-reactivity. Allergy 57: 1088–1089.CrossRefPubMedGoogle Scholar
  17. Campos MGR, Bogdanov S, Almeida-Muradian LB, Szczesna T, Mancebo Y, Frigerio C, Ferreira F. 2008. Pollen composition and standardisation of analytical methods. Journal of Apicultural Research 47: 156-163.CrossRefGoogle Scholar
  18. Campos MGR, Frigerio C, Lopes J, Bogdanov S. 2010. What is the future of bee pollen? Journal of ApiProduct and Apimedical Science. 2: 131-144.CrossRefGoogle Scholar
  19. Carpes ST, Begnini R, De Alencar SM, Masson ML. 2007. Study of preparations of bee pollen extracts, antioxidant and antibacterial activity. Ciência e Agrotecnología 31: 1818-1825.CrossRefGoogle Scholar
  20. Cocan O, Marghitas LA, Dezmirean D, Laslo L. 2005. Composition and biological activities of bee pollen: review. Bulletin of the University of Agricultural Science and Veterinary Medicine 61: 221-226.Google Scholar
  21. Da Silva IA, Silva TM, Camara CA, Queiroz N, Magnani M, Novais JS, Soledade LE, Lima Ede O, de Souza AL, de Souza AG. 2013. Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food Chemistry 141: 3552-3558.CrossRefPubMedGoogle Scholar
  22. De Novais JS, Garcez ACA, Absy ML, Santos FAR. 2015. Comparative pollen spectra of Tetragonisca angustula (Apidae, Meliponini) from the Lower Amazon (N Brazil) and caatinga (NE Brazil). Apidologie 46: 417-431.CrossRefGoogle Scholar
  23. Denisow B, Denisow-Pietrzyk M. 2016. Biological and therapeutic properties of bee pollen: a review. Journal of the Science of Food and Agriculture. 96: 4303-4309.CrossRefPubMedGoogle Scholar
  24. Edlund AF, Swanson R, Presuss D. 2004. Pollen and stigma structure and function: The role of diversity in pollination. The Plant Cell 16: 84-97.CrossRefGoogle Scholar
  25. Erkmen O, Ozcan MM. 2008. Antimicrobial effects of Turkish propolis, pollen, and laurel on spoilage and pathogenic foodrelated microorganisms. Journal of Medicinal Food 11: 587-592.CrossRefPubMedGoogle Scholar
  26. Fatrcová-Šramková K, Nôžková J, Kačániová M, Máriássyová M, Rovná K, Stričík M. 2013. Antioxidant and antimicrobial properties of monofloral bee pollen. Journal of Environmental Science and Health B. 48: 133-138.CrossRefGoogle Scholar
  27. Feás X, Vázquez-Tato MP, Estevinho L, Seija JA, Iglesias A. 2012. Organic bee pollen: botanical origin, nutritional value, bioactive compounds, antioxidant activity and microbiological quality. Molecules 17: 8359-8377.CrossRefPubMedGoogle Scholar
  28. Gegotek A, Nikliński J, Žarković N, Žarković K, Waeg G, Łuczaj W, Charkiewicz R, Skrzydlewska E. 2016. Lipid mediators involved in the oxidative stress and antioxidant defense of human lung cancer cells. Redox Biology 9: 210-219.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Graikou K, Kapeta S, Aligiannis N, Sotiroudis G, Chondrogianni N, Gonos E, Chinou I. 2011.Chemical analysis of Greek pollen: Antioxidant, antimicrobial and proteasome activation properties. Chemistry Central Journal 5: 5-13.CrossRefGoogle Scholar
  30. Halliwell B, Gutteridge J, Aruoma O. 1987. The deoxyribose method:a simple test-tube assay for determination of rate constants for reactions of hydroxyl radicals. Analytical Biochemistry 165: 215–219.CrossRefPubMedGoogle Scholar
  31. Heard TA. 1994. Behaviour and pollinator efficiency of stingless bees and honey bees on macadamia flowers. Journal of Apicultural Research 33: 191-198.CrossRefGoogle Scholar
  32. Ishikawa Y, Tokura T, Nakano N, Hara M, Niyonsaba F, Ushio H, Yamamoto Y, Tadokoro T, Okumura K, Ogawa H. 2008. Inhibitory effect of honeybee-collected pollen on mast cell degranulation in vivo and in vitro. Journal of Medicinal Food 11: 14–20.CrossRefPubMedGoogle Scholar
  33. Kacániová M, Vuković N, Chlebo, Haščík P, Rovná K, Cubon J, Dżugan M, Pasternakiewicz A. 2012. The antimicrobial activity of honey, bee pollen loads and beeswax from Slovakia. Archives of Biological Science 64: 927-934.CrossRefGoogle Scholar
  34. Ketkar SS, Rathore AS, Lohidasan S, Rao L, Paradkar AR, Mahadik KR. 2014. Investigation of the nutraceutical potential of monofloral Indian mustard bee pollen. Journal of Integrative Medicine 12: 379-389.CrossRefPubMedGoogle Scholar
  35. Komosinska-Vassev K, Olczyk P, Kazmierczak J, Mencner L, Olczyk K. 2015. Bee Pollen: Chemical Composition and Therapeutic Application. Evidence-Based Complementary and Alternative Medicine 1-6 pp.  http://dx.doi.org/10.1155/2015/297425 (24.07.2016).CrossRefGoogle Scholar
  36. Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V. 2001. Method for measurement of antioxidant activity in human fluids. Journal of Clinical Pathology 54: 356–361.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Korkmaz M, Tavsanli NG, Ozcelik H. 2016. Use of complementary and alternative medicine and quality of life of cancer patients. Holistic Nursing Practice March/April: 88-95.Google Scholar
  38. Kostic AZ, Barac MB, Stanojevic SP, Milojkovic-Opsenica DM, Tesic ZL, Sikoparija, B, Radisik P, Prentovic M, Pesic MB. 2015. Physicochemical composition and techno-functional properties of bee pollen collected in Serbia. LWT - Food Science and Technology 62: 301-309.CrossRefGoogle Scholar
  39. Kustiawan PM, Puthong S, Arung ET and Chanchao C. 2014. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines. Asian Pacific Journal of Tropical Biomedicine 4: 549-556.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lalhmangaihi R, Ghatak S, Laha R, Gurusubramanian G, Kumar NS. 2014. Protocol for optimal quality and quantity pollen DNA isolation from honey samples. Journal of Biomolecular Techniques 25: 92-95.PubMedPubMedCentralGoogle Scholar
  41. Lloyd-Prichard D, Lucas S, Roberts T, Haberle S. 2016. Assessment of pollen assemblages from the hives of Tetragonula carbonaria for the presence of the threatened species Grevillea parviflora subsp. parviflora. Journal of Pollination Ecology 18: 23-30. Tetragonula carbonaria Grevillea parviflora … parviflora.Google Scholar
  42. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265-275.PubMedPubMedCentralGoogle Scholar
  43. LeBlanc BW, Davis OK, Boue S, DeLucca A, Deeby T. Antioxidant activity of Sonoran Desert bee pollen. 2009. Food Chemistry 115: 1299-305.CrossRefGoogle Scholar
  44. Luz CFP, Barth OM. 2012. Pollen analysis of honey and beebread derived from Brazilian mangroves. Revista Brasileira de Botânica 35: 79-85.Google Scholar
  45. Massaro CF, Shelley D, Heard TA, Brooks P. 2014. In vitro antibacterial phenolic extracts from ‘sugarbag’ pot-honeys of Australian stingless bees (Tetragonula carbonaria). Journal of Agricultural and Food Chemistry 62: 12209-12217.CrossRefPubMedGoogle Scholar
  46. Massaro CF, Smyth TJ, Smyth WF, Heard TA, Leonhardt SD, Katouli M, Wallace HM, Brooks P. 2015. Phloroglucinols from anti-microbial deposit-resins of Australian stingless bees (Tetragonula carbonaria). Phytotherapy Research 29: 48-58.CrossRefPubMedGoogle Scholar
  47. Morkunas I, Formela M, Marczak L, Stobiecki M, Bednarski W. 2013. The mobilization of defence mechanisms in the early stages of pea seed germination against Ascochyta pisi. Protoplasma 250: 63-75.CrossRefPubMedGoogle Scholar
  48. Nakamura K, Ishiyama K, Sheng H, Ikai H, Kanno T, Niwano Y. 2015. Bactericidal Activity and Mechanism of Photoirradiated Polyphenols against Gram-Positive and -Negative Bacteria Journal of Agriculture and Food Chemistry 63: 7707-7713.CrossRefGoogle Scholar
  49. Nurdianah HF, Ahmad Firdaus AH, Eshaifol Azam O, Wan Adnan WO. 2016. Antioxidant activity of bee pollen ethanolic extracts from Malaysian stinglessbee measured using DPPH-HPLC assay. International Food Research Journal 23: 403-405.Google Scholar
  50. Oliveira-Abreu C, Hilário SD, Luz CFP 2014. Pollen and néctar foraging by Melipona quadrifasciata anthidioides Lepeletier (Hymenoptera: Apidae: Meliponini) in natual habitat. Sociobiology 61: 441-448.CrossRefGoogle Scholar
  51. Pascoal A, Rodrigues S, Texeira A, Feás X, Estevinho LM. 2014. Biological activities of commercial bee pollen: review. Food Chemistry and Toxicology 63: 233-239.CrossRefGoogle Scholar
  52. Patton T, Barrett J, Brennan J, Moran N. 2006. Use of spectrophotometric bioassay for determination of microbial sensitivity to manuka honey. Journal of Microbiological Methods 64: 84–95.CrossRefPubMedGoogle Scholar
  53. Pérez-Pérez EM, Vit P, Rivas E, Sciortino R, Sosa A, Tejada D, Rodríguez-Malaver AJ. 2012. Antioxidant activity of four colour fractions of bee pollen from Mérida, Venezuela. Archivos Latinoamericanos de Nutrición 62: 375-380.PubMedGoogle Scholar
  54. Ramalho M; Kleinert-Giovannini A; Imperatriz-Fonseca VL. 1990. Important bee plants for stingless bees (Melipona and Trigonini) and Africanised honeybees (Apis mellifera) in Neotropical habitats: a review. Apidologie 21: 469-488.CrossRefGoogle Scholar
  55. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity in improved ABTS radical cation decolorization assay. Free Radical in Biology and Medicine 26: 1231-1237.CrossRefGoogle Scholar
  56. RIRDC Publication, 2015, 14/057. Honey bee and pollination program, five year research, developmentat and extension plan, 2014/15 – 2018/19.Google Scholar
  57. Silva TM, Camara CA, Lins AC, Agra Mde F, Silva EM, Reis IT, Freitas BM. 2009. Chemical composition, botanical evaluation and screening of radical scavenging activity of collected pollen by the stingless bees Melipona rufiventris (Uruçu-amarela). Anais da Academia Brasileira de Ciências 81: 173-178.CrossRefPubMedGoogle Scholar
  58. Singh B, Sharma P, Kumar A, Chadha P, Kaur R, Kaur A. 2016. Antioxidant and in vivo genoprotective effects of phenolic compounds identified from an endophytic Cladosporium velox and their relationship with its host plant Tinospora cordifolia. Journal of Ethnopharmacology 194: 450-456.CrossRefPubMedGoogle Scholar
  59. Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299: 152–178.CrossRefGoogle Scholar
  60. Somerville DC. 2005. Lipid content of honey bee-collected pollen from south-east Australia. Australian Journal of Experimental Agriculture 45: 1659.CrossRefGoogle Scholar
  61. Somerville DC, Nicol HI. 2006. Crude protein and amino acid composition of honey bee-collected pollen pellets from south-east Australia and a note on laboratory disparity. Animal Production Science 46: 141-149.CrossRefGoogle Scholar
  62. Szczsna T. 2006. Protein content amino acid composition of bee-collected pollen from selected botanical origins. Journal of Apicultural Research 50: 81-90.Google Scholar
  63. Tan HT, Rahman RA, Gan SH, Halim AS, Hassan SA, Sulaiman SA, Kirnpal-Kaur B. 2009. The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey. Complementary and Alternative Medicine 9: 34-39.CrossRefPubMedGoogle Scholar
  64. Tiwari HK, Sapkota D, Das AK, Sen MR. 2009. Assessment of different tests to detect methicillin resistant Staphylococcus aureus Southeast Asian Journal of Tropical Medicine Public Health 40: 801-806.PubMedGoogle Scholar
  65. Tomás-Barberán FA, Truchado P, Ferreres F. 2013. Flavonoids in stingless-bee and honey-bee honeys. pp. 461-474. In: Vit P, Pedro SRM, Roubik D, eds. Pot-Honey: A legacy of stingless bees. Springer; New York, USA. 654 pp.CrossRefGoogle Scholar
  66. Vit P, Ricciardelli D’Albore G. 1994. Palinología comparada en miel y polen de abejas sin aguijón (Hymenoptera: Apidae: Meliponinae) de Venezuela. pp. 121-132. In Mateu Andrés I, Dupré Ollivier M, Güemes Heras J, Burgaz Moreno ME, eds. ME. X Simposio de Palinología. Trabajos de Palinología Básica y Aplicada. Universitat de Valencia; Valencia, España., Septiembre. pp. 313.Google Scholar
  67. Vit P, Santiago B, Pedro SRM, Peña-Vera M, Pérez-Pérez E. 2016. Chemical and bioactive characterization of pot-pollen produced by Melipona and Scaptotrigona stingless bees from Paria Grande, Amazonas State, Venezuela. Emirates Journal of Food and Agriculture 28: 78-84.CrossRefGoogle Scholar
  68. Woisky RG, Salatino A. 1998. Analysis of propolis: some parameters and procedures for chemical quality control. Journal of Apiculture Research 37: 99-105.CrossRefGoogle Scholar
  69. Yao L, Jiang Y, D'Arcy B, Singanusong R, Datta N, Caffin N, Raymont K. 2004. Quantitative high-performance liquid chromatography analyses of flavonoids in Australian Eucalyptus honeys. Journal of Agricultural and Food Chemistry 52: 210-214.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Elizabeth Pérez-Pérez
    • 1
  • Miguel Sulbarán-Mora
    • 1
  • Ortrud Monika Barth
    • 2
  • Carmelina Flavia Massaro
    • 3
  • Patricia Vit
    • 4
    • 5
  1. 1.Laboratory of Biotechnological and Molecular Analysis, Faculty of Pharmacy and Bioanalysis, Universidad de Los AndesMéridaVenezuela
  2. 2.Instituto Oswaldo CruzFiocruzBrazil
  3. 3.School of Earth, Environmental and Biological SciencesScience and Engineering Faculty, Queensland University of TechnologyBrisbaneAustralia
  4. 4.Apitherapy and Bioactivity, Food Science DepartmentFaculty of Pharmacy and Bioanalysis, Universidad de Los AndesMéridaVenezuela
  5. 5.Cancer Research Group, Discipline of Biomedical Science, Cumberland Campus C42, The University of SydneyLidcombeAustralia

Personalised recommendations