Advertisement

Characterization of Pot-Pollen from Southern Venezuela

  • Patricia Vit
  • Giancarlo Ricciardelli D’Albore
  • Ortrud Monika Barth
  • María Peña-Vera
  • Elizabeth Pérez-Pérez
Chapter

Abstract

Melipona colonies frequently nest in tree cavities in southern Venezuela, and traditional stingless beekeeping employs log hives. Pot-pollen was collected from 13 stingless bee colonies in Amazonas, Apure, Barinas, and Bolívar states of southern Venezuela. The botanical origin was studied by palynology. Ash, carbohydrates, fat, moisture, and proteins were the proximal analysis measured in pot-pollen produced by Melipona compressipes, Melipona eburnea, Melipona favosa, Melipona sp. fulva group, Melipona lateralis kangarumensis, Melipona paraensis, and Frieseomelitta sp. aff. varia. Bioactive components (flavonoids, polyphenols) and antioxidant activity were determined from ethanolic extracts. Major flavonoids were screened by HPLC-UV.

Notes

Acknowledgments

To the memory of Professor João MF Camargo, Biology Department, Universidade de São Paulo, Ribeirão Preto, Brazil, for the identification of the Venezuelan stingless bees. Special thanks to stingless beekeepers from southern Venezuela for their role as guardians of the tradition and facilitating the collection of pot-pollen. To project FA-127-93B from the Council for the Scientific, Humanistic, and Technological Development at Universidad de Los Andes, Mérida, Venezuela, for supporting field work needed to collect the pot-pollen in Venezuela; to the scholarship ULA-BID-CONICIT to PV, two stages at Universitá di Perugia, Italy, to study melissopalynology and two stages at CEBAS-CSIC, Murcia, Spain, to study flavonoids with Professor F.A. Tomás-Barberán and Professor F. Ferreres; to the support of ZG-AVA-FA-01-98-01 from the Council of Scientific, Humanistic, Technological, and Artistic Development at Universidad de Los Andes, to the Group Apitherapy and Bioactivity; to referees for their appreciated comments; and to Dr. D.W. Roubik for careful English editing.

References

  1. Anderson KE, Sheehan TH, Eckholm BJ, Mott BM, DeGrandi-Hoffman G. 2011. An emerging paradigm of colony health: Microbial balance of the honey bee and hive (Apis mellifera). Insects Sociaux 58: 431–444.CrossRefGoogle Scholar
  2. AOAC. 1999. Official Methods of Analysis. 15th ed. Association of Official Analytical Chemists; Arlington, VA, USA. 1093 pp.Google Scholar
  3. Bárbara MS, Machado CS, Sodré Gda S, Dias LG, Estevinho LM, de Carvalho CA. 2015. Microbiological assessment, nutritional characterization and phenolic compounds of bee pollen from Mellipona mandacaia Smith, 1983. Molecules 20: 12525-12544.CrossRefPubMedGoogle Scholar
  4. Barth OM. 1969. Pollenspektrum einiger brasilianischer Honige. Zeitschrift für Bienenforschung 9: 410-419.Google Scholar
  5. Barth OM. 1989. O pólen no mel brasileiro. Editoria Luxor; Rio de Janeiro, Brasil. 151 pp.Google Scholar
  6. Barth OM, Freitas AS, Sousa GL, Almeida-Muradian LB. 2013. Pollen, physicochemical and trophic analysis of paired honey samples of Apis and Tetragonisca bees. Interciência 38: 280-285.Google Scholar
  7. Bogdanov S, Vit P, Kilchenmann V. 1996. Sugar profiles and conductivity of stingless bee honeys from Venezuela. Apidologie. 27: 445-450.CrossRefGoogle Scholar
  8. Camargo JMF, Pedro SRM. 2013. Meliponini Lepeletier, 1836. In Moure JS, Urban D, Melo GAR, orgs. Catalogue of bees (Hymenoptera, Apoidea) in the Neotropical Region. On-line version. Available at: http://moure.cria.org.br/catalogue?id=34932
  9. Campos MGR, Bogdanov S, Bicudo de Almeida-Muradian L, Szczesna T, Mancebo Y, Frigerio C, Ferreira F. 2008. Pollen composition and standardisation of analytical methods. Journal of Apicultural Reserch 47: 154-161.CrossRefGoogle Scholar
  10. Campos MGR, Frigerio C, Lopes J, Bogdanov S. 2010. What is the future of bee pollen? Journal of ApiProduct and Apimedical Science 2: 131-144.CrossRefGoogle Scholar
  11. Campos M, Markham KR, Mitchell KA, Da Cunha AP. 1997. An approach to the characterization of bee pollens via their flavonoid/phenolic profiles. Phytochemical Analysis 8: 181–185.CrossRefGoogle Scholar
  12. Campos MG, Webby RE, Markham KR. 2002. The unique occurrence of the flavone aglycone tricetin in Myrtaceae pollen. Zeitschrift für Naturforschung C: A Journal of Biosciences 57: 944–946.CrossRefPubMedGoogle Scholar
  13. Carpes ST. 2008. Estudo das características físico-químicas e biológicas do pólen apícola de Apis mellifera L. da região Sul do Brasil. PhD Thesis, Tese apresentada ao Programa de Pós-Graduação em Tecnologia de Alimentos, Sector de Tecnologia da Universidade Federal do Paraná, Paraná, Brazil.Google Scholar
  14. Carr DE, Haber AI, LeCroy KA, Lee DEA, Link RI. 2015. Variation in reward quality and pollinator attraction: the consumer does not always get it right. AoB Plants. 7: plv034; doi: 10.1093/aobpla/plv034. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4417137/ CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cortopassi-Laurino M, Imperatriz-Fonseca VL, Roubik DW, Dollin A, Heard T, Aguilar I, Venturieri GC, Eardley C, Nogueira-Neto P. 2006. Global meliponiculture: challenges and opportunities. Apidologie 37: 275-292.CrossRefGoogle Scholar
  16. Costa SN, Alves RMO, Carvalho CAL, Conceição PJ. 2015. Fontes de pólen utilizadas por Apis mellifera Latreille na região semiárida, Ciencia Animal Brasileira, Goiânia 16: 491-497.CrossRefGoogle Scholar
  17. Cheynier V, Tomás-Barberán FA, Yoshida K. 2015. Polyphenols: from plants to a variety of food and nonfood uses. Journal of Agricultural and Food Chemistry 63: 7589–7594CrossRefPubMedGoogle Scholar
  18. Dabija T. 2010. Study of amino acids in pollen's composition. Bulletin UASVM Animal Science and Biotechnologies 67: 1-5.Google Scholar
  19. Deliza R, Vit P. 2013. Sensory evaluation of pot-honey. pp. 349-361. In: Vit P, Pedro SRM, Roubik D, eds. Pot-Honey: A legacy of stingless bees. Springer, New York, USA. 654 pp.CrossRefGoogle Scholar
  20. Fatrcová-Šramková K, Nôžková J, Kačániová M, Máriássyová M, Rovná K, Stričík M. 2013. Antioxidant and antimicrobial properties of monofloral bee pollen. Journal of Evironmental Science and Health B 48: 133-138.CrossRefGoogle Scholar
  21. Feás X, Vázquez-Tato MP, Estevinho L, Seijas JA, Iglesias A. 2012. Organic bee pollen: Bioactive compounds, antioxidante activity and microbiological quality. Molecules 17: 8359–8377.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Florio Almeida J, Soares dos Reis A, Serafini Heldt LF, Pereira D, Bianchin M, Moura C, Plata-Oviedo MV, Haminiuk CWI, Ribeiro IS, Luz CFP, Carpes ST. 2017. Lyophilized bee pollen extract: A natural antioxidant source to prevent lipid oxidation in refrigerated sausages. LWT - Food Science and Technology 76: 299-305.CrossRefGoogle Scholar
  23. Graikou K, Kapeta S, Aligiannis N, Sotiroudis G, Chondrogianni N, Gonos E, Chinou I. 2011. Chemical analysis of Greek pollen - Antioxidant, antimicrobial and proteasome activation properties. Chemical Center Journal 5: 33-37.CrossRefGoogle Scholar
  24. Halliwell B, Gutteridge J, Aruoma O. 1987. The deoxyribose method: a simple test-tube assay for determination of rate constants for reactions of hydroxyl radicals. Analytical Biochemistry 165: 215–219.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hanley ME, Franco M, Pichon S, Darvill B, Goulson D. 2008. Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants. Functional Ecology 22: 592–598.CrossRefGoogle Scholar
  26. Harborne JB, Turner BL. 1984. Plant Chemosystematics. Academic Press; London, UK 562 pp.Google Scholar
  27. Juszczak L, Gałkowska D, Ostrowska M, Socha R. 2016. Antioxidant activity of honey supplemented with bee products. Natural Products Research 30: 1436-1439.CrossRefGoogle Scholar
  28. Ketkar SS, Rathore AS, Lohidasan S, Rao L, Paradkar AR, Mahadik KR. 2014. Investigation of the nutraceutical potential of monofloral Indian mustard bee pollen. Journal of Integral Medicine 12: 379-389.CrossRefGoogle Scholar
  29. Kim SB, Jo YH, Liu Q, Ahn JH, Hong IP, Han SM, Hwang BY, Lee MK. 2015. Optimization of extraction condition of bee pollen using response surface methodology: Correlation between anti-melanogenesis, antioxidant activity, and phenolic content. Molecules 20: 19764-19774.CrossRefPubMedGoogle Scholar
  30. Koracevic D, Koracevic G, Djordjevic V, Andrejevic S, Cosic V. 2001. Method for measurement of antioxidant activity in human fluids. Journal of Clinical Patholology 54: 356–361.CrossRefGoogle Scholar
  31. Kostić AŽ, Pešić MB, Mosić MD, Dojčinović BP, Natić MM, Trifković JĐ. 2015. Mineral content of bee pollen from Serbia. Arhiv za Higijenu Rada i Toksikologiju 66: 251-258.CrossRefPubMedPubMedCentralGoogle Scholar
  32. LeBlanc BW, Davis OK, Boue S, DeLucca A, Deeby T. 2009. Antioxidant activity of Sonoran Desert bee pollen. Food Chemistry 115: 1299–1305.CrossRefGoogle Scholar
  33. Leja M, Mareczek A, Wyżgolik G, Klepacz-Baniak J, Czekoń K. 2007. Antioxidative properties of bee pollen in selected plant species. Food Chemistry 100: 237–240.CrossRefGoogle Scholar
  34. Leonhardt SD, Dworschak K, Eltz T, Blüthgen N. 2007. Foraging loads of stingless bees and utilisation of stored nectar for pollen harvesting. Apidologie 38:125-135.CrossRefGoogle Scholar
  35. Lins ACS, Silva TMS, Camara CA, Silva EMS, Freitas BM. 2003. Flavonoides isolados do polen coletado pela abelha Scaptotrigna bipunctata (canudo). Revista Brasilera de Farmacognosia 13: 40–41.CrossRefGoogle Scholar
  36. López-Palacios S. 1986. Catálogo para una Flora Apícola Venezolana; Mérida, Venezuela, Consejo de Publicaciones - Universidad de Los Andes. 211 pp.Google Scholar
  37. Louveaux J, Maurizio A, Vorwohl G. 1978. Methods of Melissopalynology. Bee World 51: 125-138.Google Scholar
  38. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265-275.PubMedPubMedCentralGoogle Scholar
  39. Mărgăoan R, Mărghitaş LA, Dezmirean DS, Dulf FV, Bunea A, Socaci SA, Bobiş O. (2014) Predominant and secondary pollen botanical origins influence the carotenoid and fatty acid profile in fresh honeybee-collected pollen. Journal of Agricultural and Food Chemistry 62: 6306-6316.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mărghitas LA, Stanciu OG, Dezmirean DS, Bobiş O, Popescu O, Bogdanov S, Campos MG. 2009. In vitro antioxidant capacity of honeybee-collected pollen of selected floral origin harvested from Romania. Food Chemistry 115: 878–883.CrossRefGoogle Scholar
  41. Menezes C, Vollet-Neto A, Imperatriz-Fonseca VL. 2012. A method for harvesting unfermented pollen from stingless bees (Hymenoptera, Apidae, Meliponini). Journal of Apicultural Research 51: 240-244.CrossRefGoogle Scholar
  42. Menezes C, Vollet-Neto A, León-Contrera FA, Venturieri GC, Imperatriz-Fonseca VL. 2013. The role of useful microorganisms to stingless bees and stingless beekeeping. pp. 153-171. In: Vit P, Pedro SRM, Roubik D, eds. Pot-Honey: A legacy of stingless bees. Springer, New York, USA. 654 pp.CrossRefGoogle Scholar
  43. Michener CD. 2000. The bees of the world. Johns Hopkins Univ. Press; Baltimore, United States. 654 pp.Google Scholar
  44. Michener CD, Grimaldi DA. 1988a. A Trigona from late Cretaceous amber of New Jersey (Hymenoptera: Apidae: Meliponinae). American Museum Novitates 2917: 10 pp.Google Scholar
  45. Michener CD, Grimaldi DA. 1988b. The oldest fossil bee: Apoid history, evolutionary stasis, and antiquity of social behavior. Proceedings of the National Academy of Sciences of the United States of America 85: 6424-6426.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Morais M, Moreira L, Feás X, Estevinho LM. 2011. Honeybee-collected pollen from five Portuguese Natural Parks: palynological origin, phenolic content, antioxidant properties and antimicrobial activity. Food Chemistry and Toxicology 49: 1096-1101.CrossRefGoogle Scholar
  47. Novais JS, Garcêz ACA, Absy ML, Santos FAR. 2015. Comparative pollen spectra of Tetragonisca angustula (Apidae, Meliponini) from the Lower Amazon (N Brazil) and caatinga (NE Brazil). Apidologie 46: 417-431.Google Scholar
  48. Oliveira-Abreu C, Hilario SD, Luz CFP, Alves-Dos-Santos I. 2014. Pollen and nectar foraging by Melipona quadrifasciata anthidioides Lepeletier (Hymenoptera: Apidae: Meliponini) in natural habitat. Sociobiology 61: 441-448.Google Scholar
  49. Ortiz ME, Formaguera MJ, Raya RR, Mozzi F. 2012. Lactobacillus reuteri CRL 1101 highly produces mannitol from sugarcane molasses as carbon source. Applied Microbiology and Biotechnology 95: 991-999.CrossRefPubMedGoogle Scholar
  50. Palacios-Chávez B, Ludlow-Wiechers R, Villanueva R. 1991. Flora palinológica de la reserva de Sian Ka’an, Quintana Roo, México. Centro de Investigaciones de Quintana Roo; Quintana Roo, México. 321 pp.Google Scholar
  51. Pedro SRM, Camargo JMF. 2013. Stingless bees from Venezuela. pp. 73-86. In: Vit P, Silvia RMP y Roubik D, eds. Pot honey: A legacy of stingless bees. Springer, New York. 654 pp.Google Scholar
  52. Pérez-Pérez E, Rodríguez-Malaver J, Vit P. 2007. Efecto de la fermentación en la capacidad antioxidante de miel de Tetragonisca angustula Latreille, 1811. BioTecnología 10: 14-22.Google Scholar
  53. Pérez-Pérez EM, Vit P, Huq F. 2013. Flavonoids and polyphenols in studies of honey antioxidant activity. International Journal of Medicinal Plants and Alternative Medicine 1: 63-72.Google Scholar
  54. Pérez-Pérez EM, Vit P, Rivas E, Sciortino R, Sosa A, Tejada D, Rodríguez-Malaver AJ. 2012. Antioxidant activity of four color fractions of bee pollen from Mérida, Venezuela. Archivos Latinoamericanos de Nutrición 62: 375-380.PubMedPubMedCentralGoogle Scholar
  55. Persano Oddo L, Heard TA, Rodríguez-Malaver A, Pérez RA, Fernández-Muiño M, Sancho MT, Sesta G, Lusco L, Vit P. 2008. Composition and antioxidant activity of Trigona carbonaria honey from Australia. Journal of Medicinal Food 11: 789-794.CrossRefPubMedGoogle Scholar
  56. Persano Oddo L, Ricciardelli D’Arbore G. 1986. Spettro pollinico di alcuni mieli dell’America tropicale. Apicoltura 2: 25-66.Google Scholar
  57. Qian WL, Khan Z, Watson DG, Fearnley J. 2008. Analysis of sugars in bee pollen and propolis by ligand exchange chromatography in combination with pulsed amperometric detection and mass spectrometry. Journal of Food Composition and Analysis 21: 78-83.CrossRefGoogle Scholar
  58. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity in improved ABTS radical cation decolorization assay. Free Radical in Biology and Medicine 26: 1231-1237.CrossRefGoogle Scholar
  59. Rzepecka-Stojko A, Stojko J, Kurek-Górecka A, Górecki M, Kabała-Dzik A, Kubina R, Moździerz A, Buszman E. 2015. Polyphenols from bee pollen: Structure, absorption, metabolism and biological activity. Molecules 20: 21732–21749.CrossRefPubMedGoogle Scholar
  60. Rebelo KS, Ferreira AG, Carvalho-Zilse GA. 2016. Physicochemical characteristics of pollen collected by Amazonian stingless bees. Ciência Rural 46: 927-932.CrossRefGoogle Scholar
  61. Rodríguez-Malaver AJ, Pérez-Pérez EM, Vit P. 2007. Capacidad antioxidante de mieles venezolanas de los géneros Apis, Melipona y Tetragonisca, evaluada por tres métodos. Revista del Instituto Nacional de Higiene Rafael Rangel 38: 13-18.Google Scholar
  62. Rosa CA, Lachance MA, Silva JOC, Teixeira ACP, Marino MM, Antonini Y, Martins RP. 2003. Yeast communities associated with stingless bees. FEMS Yeast Research 4: 271-275.CrossRefPubMedGoogle Scholar
  63. Roubik DW, Moreno PJE. 1991. Pollen and spores of Barro Colorado island. Monograph in Systematic Botany from the Missouri Botanical Garden. Number 36. Missouri Botanical Garden. Number 36. Missouri Botanical Garden; St. Louis, Missouri, USA. 270 pp.Google Scholar
  64. Silva TMS, Camara CA, Lins ACS, Agra MF, Silva EMS, Reis IT, Freitas BM. 2009. Chemical composition, botanical evaluation and screening of radical scavenging activity of collected pollen by the stingless bees Melipona rufiventris (uruçu-amarela). Anais da Academia Brasileira de Ciências 81: 173-178.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Silva TMS, Camara CA, Lins ACS, Barbosa-Filho JM, Silva EMS, Freitas BM, Santos FAR. 2006. Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke. Journal of Food Composition and Analysis 19: 507-511.CrossRefGoogle Scholar
  66. Silva GR, Natividade TB, Camara CA, Silva EMS, Assis Ribeiro dos Santos F, Silva TMS. 2014. Identification of sugar, amino acids and minerals from the pollen of jandaíra stingless bees (Melipona subnitida). Food and Nutrition Sciences 5: 1015-1021.CrossRefGoogle Scholar
  67. Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299: 152–178.CrossRefGoogle Scholar
  68. Souza B, Roubik D, Barth O, Heard T, Enríquez E, Carvalho C, Marchini L, Villas-Bôas J, Locatelli J, Persano Oddo L, Almeida-Muradian L, Bogdanov S, Vit P. 2006. Composition of stingless bee honey: Setting quality standards. Interciencia 31: 867-875.Google Scholar
  69. Tomás-Barberán TA, Tomás-Lorente F, Ferreres F, Garcia-Viguera C. 1989. Flavonoids as biochemical markers of the plant origin of bee pollen. Journal of the Science of Food and Agriculture 47: 337–340.CrossRefGoogle Scholar
  70. Tomas-Lorente F, Garcia-Grau MM, Niet JL, Tomas-Barberan FA. 1992. Flavonoids from Cistus ladanifer bee pollen. Phytochemistry 31: 2027-2029.CrossRefGoogle Scholar
  71. Truchado P, Vit P, Ferreres F, Tomás-Barberán F. 2011. Liquid chromatography-tandem mass spectrometry analysis allows the simultaneous characterization of C-glycosyl and O-glycosyl flavonoids in stingless bee honeys. Journal of Chromatography A 1218: 7601-7607.CrossRefPubMedGoogle Scholar
  72. Vanderplanck M, Moerman R, Rasmont P, Lognay G, Wathelet B, Wattiez R, Michez D. 2014. How does pollen chemistry impact development and feeding behaviour of polylectic bees? PLoS ONE 9:e86209 doi: 10.1371/journal.pone.0086209 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Vit P. 2005. Melissopalynology, Venezuela; Mérida, Venezuela, APIBA-CDCHT, Universidad de Los Andes. 205 pp.Google Scholar
  74. Vit P. 2008a. La miel precolombina de abejas sin aguijón (Meliponini) aún no tiene normas de calidad. Revista Boletín Centro Investigaciones Biológicas 42: 415-423.Google Scholar
  75. Vit P. 2008b. Valorización de la miel de abejas sin aguijón (Meliponini). Revista de la Facultad de Farmacia 50: 20-28.Google Scholar
  76. Vit P. 2009a. Origen botánico y propiedades medicinales del polen apícola. Revista Médica de la Extensión Portuguesa ULA 3:27-34.Google Scholar
  77. Vit P. 2009b. Caracterización fisicoquímica de mieles de abejas sin aguijón (Meliponini) de Venezuela. Revista del Instituto Nacional de Higiene Rafael Rangel 40: 7-12.Google Scholar
  78. Vit P. 2013. Melipona favosa pot-honey from Venezuela. pp. 363-382. In: Vit P, Pedro SRM, Roubik D, eds. Pot-Honey: A legacy of stingless bees. Springer, New York, USA. 654 pp.CrossRefGoogle Scholar
  79. Vit P, Bogdanov S, Kilchenman V. 1994. Composition of Venezuelan honeys from stingless bees and Apis mellifera L. Apidologie 25: 278-288.CrossRefGoogle Scholar
  80. Vit P, Deliza R, Pérez A. 2011. How a Huottuja (Piaroa) community perceives genuine and false honey from the Venezuelan Amazon, by free-choice profile sensory method. Brazilian Journal of Pharmacognosy 21: 786-792.CrossRefGoogle Scholar
  81. Vit P, Enríquez E, Barth OM, Matsuda AH, Almeida-Muradian LB. 2006a. Necesidad del control de calidad de la miel de abejas sin aguijón. MedULA 15: 36-42.Google Scholar
  82. Vit P, Fernández-Maeso MC, Ortiz-Valbuena A. 1998a. Potential use of the three frequently occurring sugars in honey to predict stingless bee entomological origin. Journal of Applied Entomology 122: 5-8.CrossRefGoogle Scholar
  83. Vit P, Medina M, Enríquez E. 2004. Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee World 85: 2-5.CrossRefGoogle Scholar
  84. Vit P, Mejías A, Rial L, Ruíz J, Peña S, González AC, Rodríguez-Malaver A, Arráez M, Gutiérrez C, Zambrano A, Barth OM. 2012. Conociendo la miel de Melipona favosa en la Península de Paraguaná, Estado Falcón, Venezuela. Rev. Inst. Nac. Hig. Rafael Rangel 43: 15-19.Google Scholar
  85. Vit P, Persano Oddo L, Marano ML, Salas de Mejías E. 1998b. Venezuelan stingless bee honeys characterised by multivariate analysis of compositional factors. Apidologie 29: 377-389.CrossRefGoogle Scholar
  86. Vit P, Pulcini P. 1996. Diastase and invertase activities in Meliponini and Trigonini honeys from Venezuela. Journal of Apicultural Research 35: 57-62.CrossRefGoogle Scholar
  87. Vit P, Ricciardelli D’Albore G. 1994a. Melissopalynology for stingless bees (Hymenoptera: Apidae: Meliponinae) in Venezuela. Journal of Apicultural Research 33: 145-154.CrossRefGoogle Scholar
  88. Vit P, Ricciardelli D’Albore G. 1994b. Palinología comparada en miel y polen de abejas sin aguijón (Hymenoptera: Apidae: Meliponinae) de Venezuela. pp. 121–132. X Simposio de Palinología. In: Mateu Andrés I, Dupré Ollivier M, Güemes Heras J, Burgaz Moreno ME, eds. Trabajos de Palinología Básica y Aplicada. Universitat de Valencia; Valencia, España. pp. 313.Google Scholar
  89. Vit P, Rodríguez-Malaver A, Almeida D, Souza BA, Marchini LC, Fernández Díaz C, Tricio AE, Villas-Bôas JK, Heard TA. 2006b. A scientific event to promote knowledge regarding honey from stingless bees: 1. Physical-chemical composition. Magistra 18: 270-276.Google Scholar
  90. Vit P, Santiago B, Pedro SRM, Perez-Perez E, Peña-Vera M. 2016. Chemical and bioactive characterization of pot-pollen produced by Melipona and Scaptotrigona stingless bees from Paria Grande, Amazonas State, Venezuela. Emirates Journal of Food and Agriculture 28: 78-84.CrossRefGoogle Scholar
  91. Vit P, Soler C, Tomás-Barberán FA. 1997. Profile of phenolic compounds of Apis mellifera and Melipona spp. honeys from Venezuela. Z. Lebensm. Unters. Forsch. 204: 43-47.CrossRefGoogle Scholar
  92. Vit P, Tomás-Barberán FA. 1998. Flavonoids in Meliponinae honey from Venezuela, related to their botanical, geographical and entomological origin to assess their putative anticataract properties. Zeitung Lebensmittel Unters. Forschung 206: 288-293.CrossRefGoogle Scholar
  93. Vit P, Yu JQ, Huq F. 2013. Use of honey in cancer prevention and therapy. pp. 481-493. In: Vit P, Pedro SRM, Roubik D, eds. Pot-Honey: A legacy of stingless bees. Springer. New York, USA. 654 pp.CrossRefGoogle Scholar
  94. Vossler FG. 2015. Broad Protein Spectrum in Stored Pollen of Three Stingless Bees from the Chaco Dry Forest in South America (Hymenoptera, Apidae, Meliponini) and Its Ecological Implications. Psyche 2015: Article ID 659538. doi: 10.1155/2015/659538 CrossRefGoogle Scholar
  95. Woisky RG, Salatino A. 1998. Analysis of propolis: some parameters and procedures for chemical quality control. Journal of Apiculture Research 37: 99-105.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Patricia Vit
    • 1
    • 2
  • Giancarlo Ricciardelli D’Albore
    • 3
  • Ortrud Monika Barth
    • 4
    • 5
  • María Peña-Vera
    • 6
  • Elizabeth Pérez-Pérez
    • 6
  1. 1.Apitherapy and Bioactivity, Food Science DepartmentFaculty of Pharmacy and Bioanalysis, Universidad de Los AndesMéridaVenezuela
  2. 2.Cancer Research Group, Discipline of Biomedical Science, Cumberland Campus C42, The University of SydneyLidcombeAustralia
  3. 3.Universitá degli StudiPerugiaItaly
  4. 4.Instituto Oswaldo CruzFiocruzBrazil
  5. 5.Laboratory of Palynology, Department of GeologyInstitute of Geosciences, Federal University of Rio de JaneiroRio de JaneiroBrazil
  6. 6.Laboratory of Biotechnological and Molecular Analysis, Faculty of Pharmacy and Bioanalysis, Universidad de Los AndesMéridaVenezuela

Personalised recommendations