Advertisement

Characterization of Scaptotrigona mexicana Pot-Pollen from Veracruz, Mexico

  • Adriana Contreras-Oliva
  • Juan Antonio Pérez-Sato
  • Fernando Carlos Gómez-Merino
  • Luz Anel López-Garay
  • Rogel Villanueva-Gutiérrez
  • María Magdalena Crosby-Galván
  • Libia Iris Trejo-Téllez
Chapter

Abstract

The stingless bee Scaptotrigona mexicana is distributed from Mexico to Costa Rica. In Mexico, this species is often found in wet lowlands but more commonly in forests not higher than 1000 m in the states of Tamaulipas, San Luis Potosí, Veracruz, Hidalgo, Puebla, State of Mexico, Morelos, Guerrero, Oaxaca, and Chiapas. This bee commonly nests in tree cavities and is kept in wood or ceramic clay hives by traditional stingless beekeepers. Pot-pollen from three hives managed in central Veracruz, Mexico, at Cañada Blanca, Manuel León, and Fortín de las Flores was analyzed in duplicates. Chemical parameters including ash, proteins, electrical conductivity, pH, phosphorus, and potassium were similar among pot-pollen samples, whereas the highest water and total soluble sugars were in samples from Fortín de las Flores. The lowest lipid content occurred in Cañada Blanca pot-pollen. Although botanical origin of the pot-pollen differed among sites, the number of plant species was nearly the same, with 13 found in Cañada Blanca and Fortín de las Flores and 11 at Manuel León. Most pollen types belonged to Tiliaceae and Burseraceae in Cañada Blanca, Fabaceae and Asteraceae in Manuel León, and Solanaceae and Asteraceae in Fortín de las Flores.

Notes

Acknowledgments

We acknowledge the Mexico’s National Council of Science and Technology (CONACYT) for the M.Sc. scholarship No. 372038 granted to LALG. ACO also thanks the financial support from Colegio de Postgraduados through the Management and Investment Trust No. 167304. We are especially thankful to Dr. David W. Roubik for his helpful comments and suggestions; his expert advice and constructive criticism have been invaluable in ensuring the most careful scrutiny, which certainly served to improve this chapter substantially. We also are very much grateful to Dr. Patricia Vit, not only for her work as an editor but also for her sustained encouragement, interest, support, and valuable advice throughout the editorial process.

References

  1. Albores-González ML, García-Guerra TG, Durán-Olguín L, Aguliar-Ayón A. 2011. Experiencia de la Unión de Cooperativas Tosepan en el fomento a la cría de las abejas nativas Pitsilnejmej (Scaptotrigona mexicana). pp. 95-99. In: Memorias del VII Seminario Mesoamericano sobre Abejas Nativas. San Cristóbal de las Casas, Chiapas, México. 242 p.Google Scholar
  2. Almeida-Muradian LB, Pamplona LC, Coimbra S, Barth OM. 2005. Chemical composition and botanical evaluation of dried bee pollen pellets. Journal of Food Composition and Analysis 18: 105-111. DOI: 10.1016/j.jfca.2003.10.008 CrossRefGoogle Scholar
  3. Almeida-Muradian LB, Stramm KM, Horita A, Barth OM, da Silva de Freitas A, Estevinho LM. 2013. Comparative study of the physicochemical and palynological characteristics of honey from Melipona subnitida and Apis mellifera. International Journal of Food Science and Technology 48: 1698-1706. DOI: 10.1111/ijfs.12140 CrossRefGoogle Scholar
  4. Anderson KE, Sheehan TH, Eckholm BJ, Mott BM, DeGrandi-Hoffman G. 2011. An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera). Insectes Sociaux 58: 431-444. DOI: 10.1007/s00040-011-0194-6 CrossRefGoogle Scholar
  5. AOAC. 1996. Official methods of analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists. Arlington, VA, USA. 937 pp.Google Scholar
  6. Arzaluz A, Obregón F, Jones R. 2002. Optimum brood size for artificial propagation of the stingless bee Scaptotrigona mexicana. Journal of Apicultural Research 41: 62-63. DOI: 10.1080/00218839.2002.11101070 CrossRefGoogle Scholar
  7. Ayala R. 1999. Revisión de las abejas sin aguijón de México (Hymenoptera: Apidae: Meliponini). Folia Entomológica Mexicana 106: 1-123.Google Scholar
  8. Ayala R, González V, Engel M. 2013. Mexican stingless bees (Hymenoptera: Apidae): diversity, distribution, and indigenous knowledge. pp. 135-152. In Vit P, Pedro-Silvia RM, Roubik D, eds. Pot-Honey: A Legacy of Stingless Bees. Springer; New York, NY, USA. 654 pp.Google Scholar
  9. Barajas J, Cortes-Rodriguez M, Rodríguez-Sandoval E. 2012. Effect of temperature on the drying process of bee pollen from two zones of Colombia. Journal of Food Process Engineering 35: 134-148. DOI: 10.1111/j.1745-4530.2010.00577.x CrossRefGoogle Scholar
  10. Camargo JMF, Pedro SRM. 2013. Meliponini Lepeletier, 1836. In Moure JS, Urban D, Melo GAR, orgs. Catalogue of bees (Hymenoptera, Apoidea) in the Neotropical Region – online version. Available at: http://moure.cria.org.br/catalogue?id=34932
  11. Campos MGR, Bogdanov S, De Almeida-Muradian LB, Szczesna T, Mancebo Y, Frigerio C, Ferreira F. 2008. Pollen composition and standardisation of analytical methods. Journal of Apicultural Research 47: 154-161. DOI: 10.3896/IBRA.1.47.2.12 CrossRefGoogle Scholar
  12. Cano-Contreras EJ, Martínez-Martínez C, Balboa-Aguilar CC. 2013. La “Abeja de Monte” (Insecta: Apidae, Meliponini) de los Choles de Tacotalpa, Tabasco: Conocimiento local, presente y futuro. Etnobiología 11: 47-57.Google Scholar
  13. Cimpoiu C, Hosu A, Miclaus V, Puscas A. 2013. Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 100: 149-154. DOI: 10.1016/j.saa.2012.04.008 CrossRefGoogle Scholar
  14. Codex Alimentations. 2001. Draft revised standard for standard for honey (at step 10 of the Codex procedure). Alinorm 01/25 (2001). pp. 19-26.Google Scholar
  15. Cornman RS, Otto CR, Iwanowicz D, Pettis JS. 2015. Taxonomic characterization of honey bee (Apis mellifera) pollen foraging based on non-overlapping paired-end sequencing of nuclear ribosomal loci. PLoS One 10: e0145365. DOI: 10.1371/journal.pone.0145365 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cortopassi-Laurino M, Imperatriz-Fonseca VL, Roubik DW, Dollin A, Heard T, Aguilar I, Venturieri GC, Eardley C, Nogueira-Neto P. 2006. Global meliponiculture: challenges and opportunities. Apidologie 37: 275-292. DOI: 10.1051/apido:2006027 CrossRefGoogle Scholar
  17. Da Costa Leite JM, Trugo LC, Costa LSM, Quinteiro LMC, Barth OM, Dutra VML. 2000. Determination of oligosaccharides in Brazilian honeys of different botanical origin. Food Chemistry 70:93-98. DOI: 10.1016/S0956-7135(99)00115-2 CrossRefGoogle Scholar
  18. Dardón MJ, Maldonado-Aguilera C, Enríquez E. 2013. The Pot-Honey of Guatemalan Bees. pp. 395-408. In: Vit P, Pedro-Silvia RM, Roubik D, eds. Pot-Honey: A Legacy of Stingless Bees. Springer; New York, NY, USA. 654 pp.Google Scholar
  19. Decourtye A, Mader E, Desneux N. 2010. Landscape enhancement of floral resources for honey bees in agro-ecosystems. Apidologie 41:264-277. DOI: 10.1051/apido/2010024 CrossRefGoogle Scholar
  20. Di Pasquale G, Salignon M, Le Conte Y, Belzunces LP, Decourtye A, Kretzschmar A, Suchail S, Brunet JL, Alaux C. 2013. Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter? PLoS ONE 8: e72016. DOI: 10.1371/journal.pone.0072016 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Domínguez-Valhondo D, Bohoyo Gil D, Hernández MT, González-Gómez D. 2011. Influence of the commercial processing and floral origin on bioactive and nutritional properties of honeybee-collected pollen. International Journal of Food Science and Technology 46: 2204-2211. DOI: 10.1111/j.1365-2621.2011.02738.x CrossRefGoogle Scholar
  22. El Sohaimy SA, Masry SHD, Shehata MG. 2015. Physicochemical characteristics of honey from different origins. Annals of Agricultural Sciences 60: 279-287. DOI: 10.1016/j.aoas.2015.10.015 CrossRefGoogle Scholar
  23. Eltz T, Brühl CA, Van der Kaars S, Linsenmair KE. 2001. Assessing stingless bee pollen diet by analysis of garbage pellets: a new method. Apidologie 32:341-353. DOI: 10.1051/apido:2001134 CrossRefGoogle Scholar
  24. Erdtman, G. 1969. Handbook of Palynology (Morphology-Taxonomy-Ecology). An Introduction to the Study of Pollen Grains and Spores. Munksgaard, Copenhagen. 486 pp.Google Scholar
  25. Estevinho LM, Rodrigues S, Pereira AP, Feás X. 2012. Portuguese bee pollen: palynological study, nutritional and microbiological evaluation. International Journal of Food Science and Technology 47: 429-435. DOI: 10.1111/j.1365-2621.2011.02859.x CrossRefGoogle Scholar
  26. Feás X, Vázquez-Tato MP, Estevinho L, Seijas JA, Iglesias A. 2012. Organic bee pollen: botanical origin, nutritional value, bioactive compounds, antioxidant activity and microbiological quality. Molecules 17:8359-8377. DOI: 10.3390/molecules17078359 CrossRefPubMedGoogle Scholar
  27. García-Flores A, del Amo Rodríguez S, Hernández-Colorado MR. 2013. Taxkat, la abeja nativa de Mesoamérica. La Ciencia y el Hombre 26: Enero-Abril 2013. Available at: https://www.uv.mx/cienciahombre/revistae/vol26num1/articulos/las-abejas.html
  28. González-Acereto J. 2008. Cría y manejo de abejas nativas sin aguijón en México. Universidad Autónoma de Yucatán. Planeta Impresores. Mérida, Yucatán, México. 177 pp.Google Scholar
  29. Grembecka M, Szefer P. 2013. Evaluation of honeys and bee products quality based on the mineral composition using multivariate techniques. Environmental Monitoring and Assessment 185: 4033-4047. DOI: 10.1007/s10661-012-2847-y CrossRefPubMedGoogle Scholar
  30. Guzmán M, Balboa C, Vandame R, Albores MA, González-Acereto J. 2011. Manejo de las abejas nativas sin aguijón en México Melipona beecheii y Scaptotrigona mexicana. El Colegio de la Frontera Sur. 64 p. Available at: file:///C:/Users/Usuario/Downloads/ECO%20Manual%20meliponicultura%202011ecosur%20(1).pdfGoogle Scholar
  31. Hurtado-Burillo M, Ruiz C, May-Itzá WJ, Quezada-Eúan JJG, de la Rúa P. 2013. Barcoding stingless bees: genetic diversity of the economically important genus Scaptotrigona in Mesoamerica. Apidologie 44:1-10. DOI: 10.1007/s13592-012-0146-9 CrossRefGoogle Scholar
  32. Hurtado-Burillo M. 2015. Caracterización molecular y morfométrica del género Scaptotrigona (Apidae: Meliponini) en Mesoamérica. Tesis de Doctorado. Universidad de Murcia-Facultad de Biología. Murcia, España. 167 p. Available at: http://www.tesisenred.net/bitstream/handle/10803/349217/TMHB.pdf?sequence=1
  33. Kaškonienė V, Venskutonis PR, Čeksterytė V. 2010. Carbohydrate composition and electrical conductivity of different origin honeys from Lithuania. LWT – Food Science and Technology 43: 801-807. DOI: 10.1016/j.lwt.2010.01.007 CrossRefGoogle Scholar
  34. Kostić AŽ, Barać MB, Stanojević SP, Milojković-Opsenica DM, Tešić ŽL, Šikoparija B, Radišić P, Prentović M, Pešić MB. 2015. Physicochemical composition and techno-functional properties of bee pollen collected in Serbia. LWT – Food Science and Technology 2015:1-9. DOI: 10.1016/j.lwt.2015.01.031 CrossRefGoogle Scholar
  35. Krell R. 1996. Value-added products from beekeeping. FAO Agricultural Services Bulletin No. 124. Food and Agriculture Organization of the United Nations. Rome, Italy. Available at: http://www.fao.org/docrep/w0076e/w0076e00.htm
  36. Kroyer G, Hegedus N. 2001. Evaluation of bioactive properties of pollen extracts as functional dietary food supplement. Innovative Food Science and Emerging Technologies 2: 171-174. DOI: 10.1016/S1466-8564(01)00039-X CrossRefGoogle Scholar
  37. Leonhardt SD, Dworschak K, Eltz T, Blüthgen N. 2007. Foraging loads of stingless bees and utilisation of stored nectar for pollen harvesting. Apidologie 38:125-135. DOI: 10.1051/apido:2006059 CrossRefGoogle Scholar
  38. Menezes C, Vollet-Neto A, Imperatriz-Fonseca VL. 2012. A method for harvesting unfermented pollen from stingless bees (Hymenoptera, Apidae, Meliponini). Journal of Apicultural Research 51:240-244. DOI: 10.3896/IBRA.1.51.3.04 CrossRefGoogle Scholar
  39. Menezes C, Vollet-Neto A, León-Contrera FA, Venturieri GC, Imperatriz-Fonseca VL. 2013. The role of useful microorganisms to stingless bees and stingless beekeeping. pp. 153-171. In: Vit P, Pedro SRM, Roubik D, eds. Pot-Honey: A legacy of stingless bees. Springer. New York, NY, USA. 654 p.CrossRefGoogle Scholar
  40. Mueller MY, Moritz RF, Kraus FB. 2012. Outbreeding and lack of temporal genetic structure in a drone congregation of the Neotropical stingless bee Scaptotrigona mexicana. Ecology and Evolution 2: 1304-1311. DOI:  10.1002/ece3.203 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nogueira C. Iglesias A, Feas X, Estevinho LM. 2012. Commercial bee pollen with different geographical origins: a comprehensive approach. International Journal of Molecular Sciences 13: 11173-11187. DOI: 10.3390/ijms130911173 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Padilla-Vargas PJ, Vásquez-Dávila MA, García-Guerra TG, Albores-González ML. 2014. Pisilnekmej: una mirada a la cosmovisión, conocimientos y prácticas nahuas sobre Scaptotrigona mexicana en Cuetzalan, Puebla, México. Etnoecológica 10:37-40.Google Scholar
  43. Palacios-Chávez R, Ludlow-Wiechers B, Villanueva-Gutiérrez R. 1991. Flora palinológica de la Reserva de la Biosfera de Sian ka’an, Quintana Roo, México. Centro de Investigaciones de Quintana Roo. Chetumal, Quintana Roo, Mexico. 321 pp.Google Scholar
  44. Palmer KA, Oldroyd BP, Quezada-Euán JJ, Paxton RJ, May-Itza Wde J. 2002. Paternity frequency and maternity of males in some stingless bee species. Molecular Ecology 11:2107-2113.CrossRefPubMedGoogle Scholar
  45. Pascoal A, Rodrigues S, Teixeira A, Feás X, Estevinho LM. 2014. Biological activities of commercial bee pollens: antimicrobial, antimutagenic, antioxidantand anti-inflammatory. Food and Chemical Toxicology 63:233-239. DOI: 10.1016/j.fct.2013.11.010 CrossRefPubMedGoogle Scholar
  46. Patlán-Martínez E, Kañetas OKJ, Guerrero FH, López MS. 2015. Las abejas nativas: tradición totonaca en el cuidado de la Naturaleza. pp. 1525-1530. In Memorias del V Congreso Latinoamericano de Agroecología. La Plata, Argentina.Google Scholar
  47. Rebelo KS, Ferreira AG, Carvalho-Zilse GA. 2016. Physicochemical characteristics of pollen collected by Amazonian stingless bees. Ciencia Rural 46. DOI: 10.1590/0103-8478cr20150999 CrossRefGoogle Scholar
  48. Reyes-González A, Camou-Guerrero A, Reyes-Salas O, Argueta A, Casas A. 2014. Diversity, local knowledge and use of stingless bees (Apidae: Meliponini) in the municipality of Nocupétaro, Michoacán, Mexico. Journal of Ethnobiology and Ethnomedicine 10: 47. DOI: 10.1186/1746-4269-10-47 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Rosa CA, Lachance MA, Silva JOC, Teixeira ACP, Marini MM, Antonini Y, Martins RP. 2003 Yeast communities associated with stingless bees. FEMS Yeast Research 4:271-275. DOI: 10.1016/S1567-1356(03)00173-9 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Rosso JML, Imperatriz-Fonseca VL, Cortopassi-Laurino, M. 2001. Meliponicultura en Brasil I: situación en 2001 y perspectivas. pp. 28-35. In Memorias del II Seminario Mexicano sobre Abejas sin Aguijón. Mérida, Yucatán, Mexico. 136 p.Google Scholar
  51. Rzepecka-Stojko A, Stojko J, Kurek-Górecka A, Górecki M, Kabała-Dzik A, Kubina R, Moździerz A, Buszman E. 2015. Polyphenols from bee pollen: structure, absorption, metabolism and biological activity. Molecules 20:21732-21749. DOI:  10.3390/molecules201219800.CrossRefPubMedGoogle Scholar
  52. Sánchez D, Nieh JC, Hénaut Y, Cruz L, Vandame R. 2004. High precision during food recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona mexicana (Apidae, Meliponini). Naturwissenschaften 91:346-349. DOI: 10.1007/s00114-004-0536-6 CrossRefPubMedGoogle Scholar
  53. Sánchez D, Vandame R. 2012. Color and shape discrimination in the stingless bee Scaptotrigona mexicana Guérin (Hymenoptera, Apidae). Neotropical Entomology 41: 171-177. DOI: 10.1007/s13744-012-0030-3 CrossRefPubMedGoogle Scholar
  54. Sánchez D, Solórzano-Gordillo E, Vandame R. 2016. A Study on Intraspecific Resource Partitioning in the Stingless bee Scaptotrigona mexicana Guérin (Apidae, Meliponini) Using Behavioral and Molecular Techniques. Neotropical Entomology DOI:  10.1007/s13744-016-0404-z CrossRefPubMedGoogle Scholar
  55. Simeão CM, Silveira FA, Sampaio IB, Bastos EM. 2016. Pollen analysis of honey and pollen collected by Apis mellifera Linnaeus, 1758 (Hymenoptera, Apidae), in a mixed environment of Eucalyptus plantation and native cerrado in Southeastern Brazil. Brazilian Journal of Biology 75:821-829. DOI: 10.1590/1519-6984.23513.CrossRefGoogle Scholar
  56. Souza BA, Lopes MTR, Pereira FM. 2012. Cultural aspects of meliponiculture. pp. 1-6. In Vit P, Roubik DW, eds. Stingless bees process honey and pollen in cerumen pots. SABER-ULA. Universidad de Los Andes. Mérida, Venezuela. Available at: http://www.saber.ula.ve/handle/123456789/35619 Google Scholar
  57. Vit P, Herrera P, Rodríguez D, Carmona J. 2008. Characterization of fresh bee pollen collected in Cacute, in Venezuelan Andes. Revista del Instituto Nacional de Higiene “Rafael Rangel” 39: 7-11.Google Scholar
  58. Vit P, Medina M, Enríquez E. 2004. Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee World 85:2-5. DOI:  10.1080/0005772X.2004.11099603 CrossRefGoogle Scholar
  59. Vit P, Santiago B, Pedro SRM, Perez-Perez E, Pena-Vera M. 2016. Chemical and bioactive characterization of pot-pollen produced by Melipona and Scaptotrigona stingless bees from Paria Grande, Amazonas State, Venezuela. Emirates Journal of Food and Agriculture 28:78-84. DOI: 10.9755/ejfa.2015-05-245 CrossRefGoogle Scholar
  60. Vossler FG. 2015. Broad Protein Spectrum in Stored Pollen of Three Stingless Bees from the Chaco Dry Forest in South America (Hymenoptera, Apidae, Meliponini) and Its Ecological Implications. Psyche 2015: Article ID 659538. DOI: 10.1155/2015/659538 CrossRefGoogle Scholar
  61. Yang K, Wu D, Ye X, Liu D, Chen J, Sun P. 2013. Characterization of chemical composition of bee pollen in China. Journal of Agricultural and Food Chemistry 61: 708-718. DOI: 10.1021/jf304056b CrossRefPubMedPubMedCentralGoogle Scholar
  62. Yáñez-Ordóñez O, Trujano-Ortega M, Llorente-Bousquets J. 2008. Patrones de distribución de las especies de la tribu Meliponini (Hymenoptera: Apoidea: Apidae) en México. Interciencia 33:41–45.Google Scholar
  63. Ziska LH, Pettis JS, Edwards J, Hancock JE, Tomecek MB, Clark A, Dukes JS, Loladze I, Polley HW. 2016. Rising atmospheric CO2 is reducing the protein concentration of a floral pollen source essential for North American bees. Proceedings of the Royal Society B: Biological Sciences 283. pii: 20160414. DOI: 10.1098/rspb.2016.0414 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Adriana Contreras-Oliva
    • 1
  • Juan Antonio Pérez-Sato
    • 1
  • Fernando Carlos Gómez-Merino
    • 1
  • Luz Anel López-Garay
    • 2
  • Rogel Villanueva-Gutiérrez
    • 3
  • María Magdalena Crosby-Galván
    • 4
  • Libia Iris Trejo-Téllez
    • 4
  1. 1.Colegio de Postgraduados Campus Córdoba. Carretera Córdoba-Veracruz km 348, Congregación Manuel LeónVeracruzMexico
  2. 2.Instituto Tecnológico Superior de Zongolica Campus Tequila. Carretera a la Compañía km 4, TepetlitlanapaVeracruzMexico
  3. 3.El Colegio de la Frontera Sur. Unidad Chetumal. Av. Centenario km 5.5ChetumalMexico
  4. 4.Colegio de Postgraduados Campus Montecillo. Carretera México-Texcoco km 36.5Montecillo, TexcocoMexico

Personalised recommendations