Advertisement

A Review of the Artificial Diets Used as Pot-Pollen Substitutes

  • Cristiano Menezes
  • Camila Raquel Paludo
  • Mônica Tallarico Pupo
Chapter

Abstract

Different microorganisms are present in pot-pollen and participate in bee bread preparation. During fermentation, vitamins, antimicrobial compounds, and enzymes can be secreted. Spoilage of bee bread is avoided by the low pH of pot-pollen, caused by lactic and acetic acid fermentation and alcoholic fermentation, and by the presence of natural products with antibiotic properties produced by resident microbiota of stored bee pollen. Interactions among microorganisms living in pot-pollen can control and optimize the microbiota, after resistant microorganisms survive in the adverse conditions created by fermentation. Evidence suggests that the symbiotic relationship between bees and pot-pollen microorganisms is stable and that an inoculum can be added by bees to ferment freshly collected and deposited pollen. The quality of pollen selected to prepare bee artificial diets and the addition of fermented pollen as an inoculum to ferment the material augment food in periods of scarcity. Additionally, propagation of plants with different blooming periods, and flowers with abundant pollen, may aid meliponiculture.

Notes

Acknowledgments

The authors thank the Fogarty International Center, National Institutes of Health (NIH), USA (grant U19TW009872); the São Paulo Research Foundation (FAPESP), Brazil (grants 2013/50954-0, 2013/04092-7, 2013/07600-3, 2012/22487-6, 2012/51112-0, and 2014/23532-0); and the National Council for Scientific and Technological Development (CNPq), Brazil (grants 400435/2014-4 and 479710/2011-2).

References

  1. Aleixo KP, Menezes C, Imperatriz-Fonseca VL, Silva CI. 2016. Seasonal availability of floral resources and ambient temperature shape stingless bee foraging behavior (Scaptotrigona aff. depilis). Apidologie online first: 1–11.Google Scholar
  2. Anderson LM, Dietz A. 1976. Pyridoxine requirement of the honey bee (Apis mellifera) for brood rearing. Apidologie 7: 67–84.CrossRefGoogle Scholar
  3. Anderson KE, Sheehan TH, Eckholm BJ, Mott BM, DeGrandi-Hoffman G. 2011. An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera). Insectes Sociaux 58: 431–444.CrossRefGoogle Scholar
  4. Bladt TT, Frisvad JC, Knudsen PB, Larsen TO. 2013. Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules 18: 11338–11376.CrossRefPubMedGoogle Scholar
  5. Brodschneider R, Crailsheim K. 2010. Nutrition and health in honey bees. Apidologie 41: 278–294.CrossRefGoogle Scholar
  6. Camargo CA. 1976. Dieta semi–artificial para abelhas da subfamilia Meliponinae (Hymenoptera, Apidae). Ciência e Cultura, 28: 430–431.Google Scholar
  7. Cortopassi-Laurino M, Gelli DS. 1991. Analyse pollinique, proprietés physico–chimique et ac–tion antibactérienne des miels d’abeilles african–isées Apis mellifera et des Méliponines du Brésil. Apidologie 22: 61–73.CrossRefGoogle Scholar
  8. Costa AC, Cruz-Landim C. 2005. Hydrolases in the hypopharyngeal glands of workers of Scaptotrigona postica and Apis mellifera (Hymenoptera, Apinae). Genetics and Molecular Research 4: 616–623.PubMedGoogle Scholar
  9. Costa L, Venturieri GC. 2009. Diet impacts on Melipona flavolineata workers (Apidae, Meliponini). Journal of Apicultural Research, 48: 38–45. DOI:  10.3896/IBRA.1.48.1.09.CrossRefGoogle Scholar
  10. DeWeerdt S. 2015. The beeline. Nature 521: S50–S51.CrossRefPubMedGoogle Scholar
  11. Díaz De Rienzo MA, Stevenson P, Marchant R, Banat IM. 2015. Antibacterial properties of biosurfactants against selected gram positive and negative bacteria. FEMS Microbiology Letters 363: fnv224.CrossRefPubMedGoogle Scholar
  12. Dicks LV, Viana B, Bommarco R, Brosi B, Arizmendi MC, Cunningham SA, Galetto L, Hill R, Lopes AV, Pires C, Taki H, Potts SG. 2016. Ten policies for pollinators. Science 354:975-976.CrossRefPubMedGoogle Scholar
  13. Engel, MS. 2000. A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). American Museum Novitates 3296: 1–11.CrossRefGoogle Scholar
  14. van Engelsdorp D, Evans JD, Saegerman C, Mullin C, Haubruge E, Nguyen BK, Frazier M, Frazier J, Cox-Foster D, Chen Y, Underwood R, Tarpy DR, Pettis JS. 2009. Colony Collapse Disorder: A descriptive study. PLoS One 4: e6481.CrossRefGoogle Scholar
  15. Fernandes-da-Silva PG, Zucoloto FS. 1990. A semi–artificial diet for Scaptotrigona depilis Moure (Hymenoptera, Apidae). Journal of Apicultural Research, 29: 233–235.CrossRefGoogle Scholar
  16. Gilliam M, Buchmann SL, Lorenz BJ, Roubik DW. 1985. Microbiology of the larval provisions of the stingless bee, Trigona hypogea, an obligate necrophage. Biotropica 17: 28–31.CrossRefGoogle Scholar
  17. Gilliam M, Morton HL. 1978. Bacteria belonging to the genus Bacillus isolated from honey bees, Apis mellifera, FED 2, 4–D and antibiotics. Apidologie 9: 213–222.CrossRefGoogle Scholar
  18. Gilliam M, Prest DB, Lorenz BJ. 1989. Microbiology of pollen and bee bread: taxonomy and enzymology of molds. Apidologie 20: 53–68.CrossRefGoogle Scholar
  19. Gilliam M, Roubik DW, Lorenz BJ. 1990. Microorganisms associated with pollen, honey, and brood provisions in the nest of a stingless bee, Melipona fasciata. Apidologie 21: 89–97.CrossRefGoogle Scholar
  20. Gilliam M. 1979a. Microbiology of pollen and bee bread: The genus Bacillus. Apidologie 10: 269–274.CrossRefGoogle Scholar
  21. Gilliam M. 1979b. Microbiology of pollen and bee bread: The yeasts. Apidologie 10: 43–53.CrossRefGoogle Scholar
  22. Gilliam M. 1997. Identification and roles of non–pathogenic microflora associated with honey bees. FEMS Microbiology Letters 155: 1–10.CrossRefGoogle Scholar
  23. Gomes RLC, Menezes C, Contrera, FAL. 2015. Worker longevity in an Amazonia Melipona (Apidae, Meliponini) species: effects of season and age at foraging onset. Apidologie 46: 133–143.CrossRefGoogle Scholar
  24. Grogan DE, Hunt JH. 1979. Pollen proteases: their potential role in insect digestion. Insect Biochemistry 9: 309–313.CrossRefGoogle Scholar
  25. Haydak MH, Palmer LS. 1942. Royal jelly and bee bread as sources of vitamins B1 B2, B6, C and nicotinic and pantothenic acids. Journal of Economic Entomology 35: 319–320.CrossRefGoogle Scholar
  26. Herbert Jr EW, Shimanuki H. 1978. Chemical composition and nutritive value of bee–collected and bee–stored pollen. Apidologie 9: 33–40.CrossRefGoogle Scholar
  27. Human H, Nicolson SW. 2006. Nutritional content of fresh, bee–collected and stored pollen of Aloe greatheadii var. davyana (Asphodelaceae). Phytochemistry 67: 1486–1492.CrossRefPubMedGoogle Scholar
  28. Irwin RE, Cook D, Richardson LL, Manson JS, Gardner DR. 2014. Secondary compounds in floral rewards of toxic rangeland plants: Impacts on pollinators. Journal of Agricultural and Food Chemistry 62: 7335–7344.CrossRefPubMedGoogle Scholar
  29. Johnson RM. 2015. Honey bee toxicology. Annual Review of Entomology 60: 415–434.CrossRefPubMedGoogle Scholar
  30. Knox RB, Heslop-Harrison J. 1969. Cytochemical localization of enzymes in the wall of the pollen grain. Nature 223: 92–94.CrossRefGoogle Scholar
  31. Kurtzman CP, Price NPJ, Ray KJ, Kuo TM. 2010. Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiology Letters 311: 140–146.CrossRefPubMedGoogle Scholar
  32. LeBlanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M. 2013. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current Opinion in Biotechnology 24: 160–168.CrossRefPubMedGoogle Scholar
  33. Leonhardt SD, Dworschak K, Eltz T, Blüthgen N. 2007. Foraging loads of stingless bees and utilization of stored nectar for pollen harvesting. Apidologie 38: 125–135.CrossRefGoogle Scholar
  34. Loper GM, Standifer LN, Thompson MJ, Gilliam M. 1980. Biochemistry and microbiology of bee–collected almond (Prunus dulcis) pollen and bee bread. I– Fatty Acids, Sterols, Vitamins and Minerals. Apidologie 11: 63–73.CrossRefGoogle Scholar
  35. Losey JE, Rayor LS, Carter ME. 1999. Transgenic pollen harms monarch larvae. Nature 399: 214.CrossRefPubMedGoogle Scholar
  36. Menezes C, Vollet-Neto A, Contrera FAL, Venturieri GC, Imperatriz-Fonseca VL. 2013. The role of useful microrganisms to stingless bees and stingless beekeeping. 153–171 pp. In: Vit P, Pedro SRM, Roubik DW, eds. Pot–Honey, a legacy of stingless bees. Springer; New York, USA. 654 pp.Google Scholar
  37. Michener CD. 1974. The social behavior of the bees. Harvard University Press, Cambridge, USA. 404 pp.Google Scholar
  38. Michener CD. 2000. The Bees of the World. 2nd ed. The Johns Hopkins University Press, Baltimore, USA. 913 pp.Google Scholar
  39. Nogueira-Neto P. 1997. Vida e criação de abelhas indígenas sem ferrão. Nogueirapis; São Paulo, Brasil. 445pp.Google Scholar
  40. Pain J, Maugenet J. 1966. Recherches biochimiques et physiologiques sur le pollen emmagasiné par les abeilles. Les Annales de l’Abeille 9: 209–236.Google Scholar
  41. Paludo CR, Ruzzini AC, Silva-Junior EA, Pishchany G, Currie CR, Nascimento FS, Kolter RG, Clardy J, Pupo MT. 2016. Whole–genome sequence of Bacillus sp. SDLI1, isolated from the social bee Scaptotrigona depilis. Genome Announcements 4: e00174–16.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Penedo MCT, Testa PR, Zucoloto FS. 1976. Valor nutritivo do gevral e do levedo de cerveja em diferentes misturas com pólen para Scaptotrigona (Scaptotrigona) postica (Hymenoptera, Apidae). Ciência e Cultura 28: 536–538.Google Scholar
  43. Pires NVCR, Venturieri GC, Contrera FAL. 2009. Elaboração de uma dieta artificial protéica para Melipona fasciculata. Documentos/Embrapa Amazônia Oriental; Belém, PA, Brasil. 363 pp.Google Scholar
  44. Potts SG, Imperatriz-Fonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, Vanbergen AJ. 2016. Safeguarding pollinators and their values to human well-being. Nature 540:220-229.CrossRefPubMedGoogle Scholar
  45. Ramalho M, Imperatriz-Fonseca VL, Giannini TC. 1998. Within–colony size variation of foragers and pollen load capacity in the stingless bee Melipona quadrifasciata anthidioides Lepeletier (Apidae, Hymenoptera). Apidologie 29: 221–228.CrossRefGoogle Scholar
  46. Rebelo KS, Ferreira AG, Carvalho-Zilse GA. 2016. Physicochemical characteristics of pollen collected by Amazonian stingless bees. Ciência Rural 46: 927–932.CrossRefGoogle Scholar
  47. Rosa CA, Lachance MA, Silva JOC, Teixeira ACP, Marini MM, Antonini Y, Martins RP. 2003. Yeast communities associated with stingless bees. FEMS Yeast Research 4: 271–275.CrossRefPubMedGoogle Scholar
  48. Roubik, D.W. 1982. Seasonality in colony food storage, brood production and adult survivorship: studies of Melipona in tropical forest (Hymenoptera: Apidae). Journal of the Kansas Entomological Society 55: 789–800.Google Scholar
  49. Roubik D. 1989. Ecology and natural history of tropical bees. Cambridge Univ. Press New York, USA. 514 pp.Google Scholar
  50. Roulston TH, Cane JH, Buchmann SL. 2000. What governs protein content of pollen: Pollinator preferences, pollen–pistil interactions, or phylogeny? Ecological Monographs 70: 617–643.Google Scholar
  51. Silva TMS, Camara CA, Lins ACS, Barbosa-Filho JM, Silva EMS, Freitas BM, Santos FAR. 2006. Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke. Journal of Food Composition and Analysis 19: 507–511.CrossRefGoogle Scholar
  52. Sinacori M, Francesca N, Alfonzo A, Cruciata M, Sannino C, Settanni L, Moschetti G. 2014. Cultivable microorganisms associated with honeys of different geographical and botanical origin. Food Microbiology 38: 284–294.CrossRefPubMedGoogle Scholar
  53. Swain MR, Anandharaj M, Ray RC, Rani RP. 2014. Fermented fruits and vegetables of Asia: A potential source of probiotics. Biotechnology Research International 2014: 250424.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tamang JP, Watanabe K, Holzapfel WH. 2016. Review: Diversity of microorganisms in global fermented foods and beverages. Frontiers in Microbiology 7: 377.PubMedPubMedCentralGoogle Scholar
  55. Van Bogaert INA, Saerens K, De Muynck C, Develter D, Soetaert W, Vandamme EJ. 2007. Microbial production and application of sophorolipids. Applied Microbiology and Biotechnology 76: 23–34.CrossRefPubMedGoogle Scholar
  56. Vásquez A, Olofsson TC. 2009. The lactic acid bacteria involved in the production of bee pollen and bee bread. Journal of Apicultural Research 48: 189–195.CrossRefGoogle Scholar
  57. Veiga JC, Menezes C, Venturieri GC, Contrera FAL. 2013. The bigger, the smaller: relationship between body size and food stores in the stingless bee Melipona flavolineata. Apidologie 44: 324–333.CrossRefGoogle Scholar
  58. Vollet-Neto A, Maia-Silva C, Menezes C, Imperatriz-Fonseca VL. 2016. Newly emerged workers of the stingless bee Scaptotrigona aff. depilis prefer stored pollen to fresh pollen. Apidologie in press.CrossRefGoogle Scholar
  59. Wang M, Zhao W-Z, Xu H, Wang Z-W, He S-Y. 2015. Bacillus in the guts of honey bees (Apis mellifera; Hymenoptera: Apidae) mediate changes in amylase values. European Journal of Entomology 112: 619–624.Google Scholar
  60. Woolford MK. 1977. Studies on the significance of three Bacillus species to the ensiling process. Journal of Applied Bacteriology 43: 447–452.CrossRefGoogle Scholar
  61. Yang K, Wu D, Ye X, Liu D, Chen J, Sun P. 2013. Characterization of chemical composition of bee pollen in China. Journal of Agricultural and Food Chemistry 61: 708–718.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cristiano Menezes
    • 1
  • Camila Raquel Paludo
    • 2
  • Mônica Tallarico Pupo
    • 2
  1. 1.Embrapa Amazônia OrientalBelémBrazil
  2. 2.Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil

Personalised recommendations