Advertisement

Pot-Pollen as a Discipline: What Does It Include?

  • David W. Roubik
  • Jorge Enrique Moreno Patiño
Chapter

Abstract

Here we discuss melittopalynology and palynology, quantitative methods, and examples from field studies. The relatively large number of undescribed tropical plant species, 15–50% of the endemic species or even in the family as a whole, produces taxonomic difficulties using barcoding molecular approaches. We emphasize the necessity of studying palynomorphs using the light microscope, particularly to define a genus or “pollen type” as a means for analysis. Classic techniques and a unified lexicon are important, as is development of refined techniques for studying bee-collected pollen.

References

  1. Barth OM, Melhem TS. 1988. Glosario Ilustrado de palinología. Editora da UNICAMP; São Paulo, Brazil. 75 pp.Google Scholar
  2. Barth OM. 1989. O polen no mel brasileiro. Grafica Luxor; Rio de Janeiro, Brazil. 151 pp.Google Scholar
  3. Brown CA 1960. Palynological Techniques. [Published Privately]. Baton Rouge, USA. 188 pp.Google Scholar
  4. Colinvaux P, de Oliveira PE, Moreno-Patiño JE. 1999. Amazon pollen manual and atlas –Manual e atlas palinologico da Amazônia. Harwood Academic Publishers; Amsterdam, Netherlands. 332 pp.Google Scholar
  5. De Klerk P, Joosten, H. (2007). The difference between pollen types and plant taxa: a plea for clarity and scientific freedom. Eiszeitalter und Gegenwart, Quaternary Science Journal 56(3): 162–171 Doi  10.3285/eg.56.3.02 CrossRefGoogle Scholar
  6. Edlund AF, Swanson R, Preuss D. 2004. Pollen and stigma structure and function: the role of diversity in pollination. The Plant Cell, Supplement 16: S84–S97.CrossRefGoogle Scholar
  7. Erdtman G. 1952. Pollen morphology and plant taxonomy. Angiosperms: an introduction to Palynology I. Almqvist and Wiksell: Stockholm, Sweden. 539 pp.Google Scholar
  8. Erdtman G. 1957. Pollen and spore morphology/Plant taxonomy II. Gymnospermae, Pteridophyta, Bryophyta (Illustrations). Almqvist and Wiksell: Stockholm, Sweden. 151 pp.Google Scholar
  9. Faegri K, Iversen J. 1950. Textbook of Modern Pollen Analysis. Munksgaard; Copenhagen, Denmark. 168 pp.Google Scholar
  10. Faegri K, Iversen J. 1989. Textbook of pollen analysis. 4th Edn. Wiley; New York, USA. 328 pp.Google Scholar
  11. Free JB. 1993. Insect Pollination of Crops. 2nd Ed. Academic Press; London, UK. 684 pp.Google Scholar
  12. Galimberti A, De Mattia F, Ilaria B, Scaccabarozzi D, Sandionigi A, Barbuto M, Casiraghi M, Labra M. 2014. A DNA barcoding approach to characterize pollen collected by honeybees. PLoS ONE 9(10):1–13. e109363 doi:  10.1371/journal.pone.0109363 CrossRefGoogle Scholar
  13. Gilliam M, Buchmann SL, Lorenz BJ, Roubik DW. 1985. Microbiology of the larval provisions of the stingless bee Trigona hypogea, an obligate necrophage. Biotropica 17: 28–325.CrossRefGoogle Scholar
  14. Gilliam M, Roubik DW, Lorenz BJ. 1990. Microorganisms associated with pollen, honey and brood provisions in the nest of a stingless bee, Melipona fasciata. Apidologie 21: 89–97.CrossRefGoogle Scholar
  15. Giraldo C, Rodriguez A, Chamorro FJ, Obregon D, Montoya P, Ramirez N, Solarte V, Nates-Parra G. 2011. Guia ilustrada de polen y plantas nativas visitadas por abejas. Fac. Ciencias, Univ. Nal. Colombia, Bogota, 230 pp.Google Scholar
  16. Halbritter H, Weber M, Zetter R, Frosch-Radivo A, Buchner R, Hesse M. 2008. PalDat – Illustrated handbook on pollen terminology. Vienna, Austria. 61 pp.Google Scholar
  17. Hanson PE, Nishida K. 2016. Insects and Other Arthropods of Tropical America. Cornell University Press, Zona Tropical; Ithaca, USA. 375 pp.Google Scholar
  18. Hawkins J, De Vere N, Griffith A, Ford R, Allainguillaume J, Hegarty MJ, Baillie L, Adams-Groom B. 2015. Using DNA Metabarcoding to identify the floral composition of honey: a new tool for investigating honey bee foraging preferences. PLoS One. DOI:  10.1371/journal.pone.0134735 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Heslop-Harrison J. 1979. An interpretation of the hydrodynamics of pollen. American Joiurnal of Botany 66: 737–743.HesseCrossRefGoogle Scholar
  20. Heslop-Harrison Y. 1977. The pollen-stigma interaction: pollen tube penetration in crocus. Annals of Botany 41: 913–922.CrossRefGoogle Scholar
  21. Hesse M, Halbritter H, Zetter R, Weber M, Buchner R, Frosch-Radivo A, Ulrich S. 2009. Pollen terminology, an illustrated handbook. Springer, Wien, Austria. 261 pp.Google Scholar
  22. Holst I, Moreno JE, Piperno D. 2007. Identification of teosinte, maize, and Tripsacum in Mesoamerica by using pollen, starch grains, and phytoliths. Proceedings of the National Academy of Science (USA) 104: 17608–17613.CrossRefGoogle Scholar
  23. Hyde HA, Williams DA. 1944. The right word. Pollen Anal. Circ. 8:6.Google Scholar
  24. Hyde HA, Williams DA. 1945. Palynology. Nature 155: 264.CrossRefGoogle Scholar
  25. Jones GD, Bryant Jr. VM, Lieux MH, Jones SD, Lingren PD. 1995. Pollen of the Southeastern United States: with emphasis on melissopalynology and entomopalynology. American Association of Stratigraphic Palynologists (AASP), Contribuion Series No. 30, 104 pp.Google Scholar
  26. Joosten H, De Klerk P. 2002. What's in a name? Some thoughts on pollen classification, identification, and nomenclature in Quaternary palynology. Rev. Palaeobot. Palynol. 122: 29–45.CrossRefGoogle Scholar
  27. Joppa LN, Roberts DL, Pimm SL. 2010. How many species of flowering plants are there?. Proceedings of the Royal Society of London B: Biological Sciences doi: 10.1098/rspb.2010.1004 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kapps RO. 2007. Pollen and Spores. 2nd Edn. American Association of Stratigraphic Palynologists (AASP); USA, 279 pp.Google Scholar
  29. Kearns CA, Inouye DW. 1993. Techniques for pollination biologists. University of Colorado Press; Niwot, USA. 583 pp.Google Scholar
  30. Kremp GOW. 1965. Morphologic encyclopedia of palynology. Contribution No. 100, University of Arizona Press; Tucson, USA. 263 pp.Google Scholar
  31. Lewis WH, Vinay P, Zenger PE. 1983. Airborne and Allergenic Pollen of North America. Johns Hopkins University Press; Baltimore, USA. 254 pp.Google Scholar
  32. Linnaeus C. 1735. Systema Naturae, sive, Regna Tria Naturae systematice proposita per classes, ordines, genera, and species. Roterdamm Editore Theodorum Haak.Google Scholar
  33. Mander L. 2016. A combinatorial approach to angiosperm pollen morphology. Proceedings of the Royal Society B 283: 20162033.  http://dx.doi.org/10.1098/rspb.2016.2033.CrossRefPubMedGoogle Scholar
  34. Martinez-Hernandez E, Cuadriello-Aguilar JI, Tellez-Valdez O, Ramirez-Arriaga E, Sosa-Najera MS, Melchor-Sanchez JEM, Medina-Camacho M, Lozano-Garcia MS. 1993 Atlas de las plantas y el polen utilizados por las cinco especies principales de abejas productoras de miel en la región del Tacana, Chiapas, Mexico. Inst. Geologia, Univ. Nal. Autonoma Mexico: Mexico DF, Mexico. 105 pp.Google Scholar
  35. Moore PD, Webb JA, Collinson ME. 1991. Pollen Analysis. 2nd. Edn. Blackwell Scientific Publications; Oxford, UK. 217 pp.Google Scholar
  36. Moreno JE, Vergara D, Jaramillo C. 2014. Las colecciones palinológicas del Instituto Smithsonian de Investigaciones Tropicales (STRI), Panamá. Boletin Asociación Latinoamericana de Paleobotanica y Palinologia 14: 207–222.Google Scholar
  37. Nicolson SW, Human H. 2013. Chemical composition of the ‘low quality’ pollen of sunflower (Helianthus annuus, Asteraceae) Apidologie 44:144–152. DOI:  10.1007/s13592-012-0166-5 CrossRefGoogle Scholar
  38. O’Rourke MK, Buchmann SL. 1991. Standardized analytical techniques for bee–collected pollen. Environmental Entomology 20: 507–513.CrossRefGoogle Scholar
  39. Palacios-Chavez R, Ludlow-Wiechers B, Villanueva R. 1991. Flora Palinológica de la Reserva de la Biosfera de Sian Ka’an, Quintana Roo, Mexico. Centro de Investigaciones de Quintana Roo (CIQRO); Chetumal, Mexico. 321 pp.Google Scholar
  40. Paton AJ, Brummitt N, Govaerts R, Harman K, Hinchcliffe S, Allkin B, Lughadha EN. 2008. Towards Target 1 of the Global Strategy for Plant Conservation: a working list of all known plant species—progress and prospects. Taxon 57(2): 602–125.Google Scholar
  41. Pearsall DM. 2000. Paleoethnobotany. A Handbook of Procedures. 2nd. Edn. Academic Press; Chicago, USA. 700 pp.Google Scholar
  42. Pitman NC, Jørgensen PM. 2002. Estimating the size of the world's threatened flora. Science 298: 989.CrossRefPubMedGoogle Scholar
  43. Potonie R. 1934. Zur morphologie der fossilen pollen und spores. Arbeiten Ints. Paläobotanik Petrographie Brennsteine, 4: 5–24.Google Scholar
  44. Punt W, Hoen, PP, Blackmore S, Nilsson S, Le Thomas A. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143: 1–825.CrossRefGoogle Scholar
  45. Richards AJ. 1997. Plant Breeding Systems. 2nd Edn. Chapman and Hall; London, UK. 529 pp.Google Scholar
  46. Richardson RT, Chia-Hua L, Sponsler DB, Quijia JO, Goodell K, Johnson RM. 2015. Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Applications in Plant Sciences 3: 1400066.; http://www.bioone.org/loi/apps.CrossRefGoogle Scholar
  47. Roubik DW. 1988. An overview of Africanized honey bee populations: reproduction, diet and competition. pp. 45–54. In: Needham GR, Page RE, Delfinado-Baker M, eds. Proccedings of International Conference on Africanized honey bees and bee mites: E. Horwood Ltd.; Chichester, UK. 100 pp.Google Scholar
  48. Roubik DW. 1989. Ecology and natural history of tropical bees. Cambridge University Press; New York, USA. 514 pp.Google Scholar
  49. Roubik DW. 1991. Aspects of Africanized honey bee ecology in tropical America. pp. 147-158 In: Spivak M, Breed MD, Fletcher DJC, eds. The African honey bee. Westview Press; Boulder, Colorado. 435 pp.Google Scholar
  50. Roubik DW. 2009. Ecological impact on native bees by the invasive Africanized honey bee. Acta Biologica Colombiana 14: 115–124.Google Scholar
  51. Roubik DW, Moreno JE. 1991. Pollen and Spores of Barro Colorado Island. Monographs in Systematic Botany from the Missouri Botanical Garden. St. Louis, USA. No. 36. 269 pp.Google Scholar
  52. Roubik DW, Moreno JE. 2000. Generalization and specialization by stingless bees. pp. 112–118. In: Proceedings of the sixth international bee research conference on tropical bees. International Bee Research Association; Cardiff, UK. 190 pp.Google Scholar
  53. Roubik DW, Moreno JE. 2009. Trigona corvina: An ecological study based on unusual nest structure and pollen analysis. Psyche. doi: 10.1155/2009/268756 CrossRefGoogle Scholar
  54. Roubik DW, Moreno JE. 2013. How to be a bee-botanist using pollen spectra. pp. 295–314. In Vit P, Pedro SRM, Roubik DW, eds. Pot–honey: a Legacy of Stingless Bees. Springer; New York, USA. 654 pp.Google Scholar
  55. Roubik DW, Schmalzel RJ, Moreno JE. 1984. Estudio apibotanico de Panama: Cosecha y fuentes de polen y nectar usados por Apis mellifera y sus patrones estacionales y anuales. Technical Bulletin 24, OIRSA; San Salvador, El Salvador. 74 pp.Google Scholar
  56. Roubik DW, Moreno JE, Vergara C, Wittmann D. 1986. Sporadic food competition with the African honey bee: projected impact on Neotropical social bees. Journal of Tropical Ecology 2: 97–111.CrossRefGoogle Scholar
  57. Roulston TH, Cane JH. 2000. Pollen nutritional content and digestibility for animals. Plant Systematics and Evolution 222: 187–209.CrossRefGoogle Scholar
  58. Silva, CI, Ortiz PL, Arista M, Bauermann SG, Evaldt ACP, Oliveira PE. 2010. Catalogo polinico: Palinologia aplicada em estudos de conservação de abelhas do gênero Xylocopa no Triângulo Mineiro. Editora da Universidade Federal de Uberlândia; Minas Gerais, Brazil. 153 pp.Google Scholar
  59. Stockmarr J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13: 615–621.Google Scholar
  60. Traverse A. 2007. Paleopalynology. 2nd Edn. Springer, New York, Vol. 28, 790 pp.Google Scholar
  61. Tschudy RH, Scott RA. eds. 1969. Aspects of Palynology. Wiley-Interscience; New York, USA. 509 pp.Google Scholar
  62. Villanueva-Gutiérrez R, Roubik DW. 2004. Why are African honey bees and not European bees invasive? Pollen diet determination in community experiments. Apidologie 35: 550–560.Google Scholar
  63. Villanueva-Gutiérrez R, Roubik DW. 2016. More than protein? Bee-flower interactions and effects of disturbance regimes revealed by rare pollen in bee nests. Arthropod-Plant Interactions DOI  10.1007/s11829-015-9413-9
  64. Vit P. 2005. Melissopalynology Venezuela. APIBA-CDCHT, Universidad de los Andes, Merida, Venezuela, 205 pp.Google Scholar
  65. Willmer P. 2011. Pollination and floral ecology. Princeton University Press; Princeton, New Jersey, USA. 788 pp.Google Scholar
  66. Wodehouse RP. 1959. Pollen Grains: their Structure, Identification, and Significance in Science and Medicine. Hafner Publishing Co.; New York, USA. 574 pp.Google Scholar
  67. Ziska LH, Pettis JS, Edwards J, Hancock JE, Tomecek MB, Clark A, Dukes JS, Loladze I, Polley HW. 2016. Rising atmospheric CO2 is reducing the protein content of a floral pollen source essential for North American bees. Proceedings of the Royal Society B 283: 20160414.  http://dx.doi.org/10.1098/rspb.2016.0414 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • David W. Roubik
    • 1
  • Jorge Enrique Moreno Patiño
    • 1
  1. 1.Smithsonian Tropical Research Institute, Calle PortobeloBalboa, AnconRepublic of Panama

Personalised recommendations