Laryngeal Transplantation

  • David G. LottEmail author
  • Robert R. Lorenz


Laryngeal transplantation has the potential to restore voice, breathing, and swallowing in patients with severe laryngeal dysfunction. Following the first successful human laryngeal transplant in 1998, significant research has been performed and advancements have been made in an effort to expand the applicability of laryngeal transplantation to a larger cohort of patients. The main areas of focus have included efforts to reduce or bypass the need for immunosuppression and to establish volitional control of the laryngeal musculature through reinnervation or pacing techniques. This chapter details the world’s first human total laryngeal transplantation and describes the lessons learned until its explantation almost 15 years later. We also summarize many of the major studies and findings that have furthered the science and have contributed to the goal of one day transplanting a fully functional larynx in any patient in need.


Laryngeal transplantation Transplantation Immunosuppression Everolimus Immunomodulation Dendritic cells Regeneration Tissue-engineering Reinnervation Larynx 

Supplementary material

Video 16.1

Explanted Larynx. In March of 2013, the first successful total laryngeal transplant patient describes his thoughts on the experience with the senior author (WMV 4065 kb)


  1. 1.
    Boles R. Surgical replantation of the larynx in dogs: a progress report. Laryngoscope. 1966;76:1057–67.PubMedGoogle Scholar
  2. 2.
    Ogura JH, Kawasald M, Takenouchi S, et al. Replantation and transplantation of the canine larynx. Ann Otol. 1966;75:295–312.Google Scholar
  3. 3.
    Silver CE, Liebert PS, Som ML. Autologous transplantation of the canine larynx. Arch Otolaryngol. 1967;86:95–102.CrossRefPubMedGoogle Scholar
  4. 4.
    Kluyskens P, Ringoir S. Follow-up of a human larynx transplantation. Laryngoscope. 1970;80:1244–50.CrossRefPubMedGoogle Scholar
  5. 5.
    Genden EM, Urken ML. Laryngeal and tracheal transplantation: ethical limitations. Mt Sinai J Med. 2003;70:163–5.PubMedGoogle Scholar
  6. 6.
    Lott DG, Manz R, Koch C, Lorenz RR. Aggressive behavior of non-melanotic skin cancers in solid organ transplant recipients. Transplantation. 2010;90:683–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Potter CP, Birchall MA. Laryngectomees’ views of laryngeal transplantation. Transpl Int. 1998;11:433–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Strome M, Wu J, Strome S, et al. A comparison of preservation techniques in a vascularized rat laryngeal transplant model. Laryngoscope. 1994;104:666–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Strome S, Brodsky G, Darrell J, et al. Histopathologic correlates of acute laryngeal allograft rejection in a rat model. Ann Otol Rhino/Laryngol. 1992;101:156–60.CrossRefGoogle Scholar
  10. 10.
    Strome M, Strome S, Darrell J, Wu J, Brodsky G. The effects of cyclosporin a on transplanted rat allografts. Laryngoscope. 1993;103:394–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Strome M, Stein J, Esclamado R, et al. Laryngeal transplantation: a case report and 40-month follow-up. N Engl J Med. 2001;344:1676–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Lorenz RR, Hicks DM, Shields RW Jr, et al. Laryngeal nerve function after total laryngeal transplantation. Otolaryngol Head Neck Surg. 2004;131:1016–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Genden EM, Iskander A, Bromberg JS, Mayer L. The kinetics and pattern of tracheal allograft reepitheliallzation. Am J Respir Cell Mol Bioi. 2003;28:673–83.CrossRefGoogle Scholar
  14. 14.
    Shipchandler TZ, Lott DG, Lorenz RR, et al. New mouse model for studying laryngeal transplantation. Ann Otol Rhinol Laryngol. 2009;118:465–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Birchall MA, Bailey M, Barker EY, Rothkotter HJ, Otto K, Macchiarini P. Model for experimental revascularized laryngeal allotransplantation. Br J Surg. 2002;89:1470–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Lorenz RR, Dan O, Fritz MA, Strome M. Rat laryngeal transplant model: technical advancements and a redefined rejection grading system. Ann Otol Rhinol Laryngol. 2002;111:1120–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Lott DG, Shipchandler TZ, Dan O, et al. A new mouse laryngeal transplantation rejection grading system. Laryngoscope. 2010;120(1):39–43.PubMedGoogle Scholar
  18. 18.
    Nelson M, Dan O, Strome M. Evaluation of parathyroid hormone as a functional biological marker of rat laryngeal transplant rejection. Laryngoscope. 2003;113:1483–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Haug M III, Dan O, Wimberley S, et al. Cyclosporine dose, serum trough levels, and allograft preservation in a rat model of laryngeal transplantation. Ann Otol Rhinol Laryngol. 2003;112:506–10.CrossRefPubMedGoogle Scholar
  20. 20.
    Lorenz RR, Dan O, Fritz MA, et al. Immunosuppressive effect of irradiation in the murine laryngeal transplantation model: a controlled trial. Ann Otol Rhinol Laryngol. 2003;112:712–5.CrossRefPubMedGoogle Scholar
  21. 21.
    Nelson M, Fritz M, Dan O, et al. Tacrolimus and mycophenolate mofetil provide effective immunosuppression in rat laryngeal transplantation. Laryngoscope. 2003;113:1308–13.CrossRefPubMedGoogle Scholar
  22. 22.
    Akst LM, Siemionow M, Dan O, et al. Induction of tolerance in a rat model of laryngeal transplantation. Transplantation. 2003;76:1763–70.CrossRefPubMedGoogle Scholar
  23. 23.
    Farwell DG, Birchall MA, Macchiarini P, et al. Laryngotracheal transplantation: technical modifications and functional outcomes. Laryngoscope. 2013;123:2502–8.PubMedGoogle Scholar
  24. 24.
    Birchall MA, Lorenz RR, Berke GS, et al. Laryngeal transplantation in 2005: a review. Am J Transplant. 2006;6:20–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Sedrani R, Cottens S, Kallen J, Schuler W. Chemical modification of rapamycin: the discovery of SDZ RAD. Transplant Proc. 1998;30:2192–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Mabuchi S, Altomare DA, Cheung M, et al. RAD001 inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model. Clin Cancer Res. 2007;13:4261–70.CrossRefPubMedGoogle Scholar
  27. 27.
    Fernandez A, Marcen R, Pascual J, et al. Conversion from calcineurin inhibitors to everolimus in kidney transplant recipients with malignant neoplasia. Transplant Proc. 2006;38:2453–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Khariwala SS, Kjaergaard J, Lorenz R, et al. Everolimus (RAD) inhibits in vivo growth of murine squamous cell carcinoma (SCC VII). Laryngoscope. 2006;116:814–20.CrossRefPubMedGoogle Scholar
  29. 29.
    Boulay A, Zumstein-Meeker S, Stephan C, et al. Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RADOO 1 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Cancer Res. 2004;64:252–61.CrossRefPubMedGoogle Scholar
  30. 30.
    Khariwala SS, Knott PD, Dan O, Klimczak A, Siemionow M, Strome M. Pulsed immunosuppression with everolimus and anti-αβ TCR: laryngeal allograft preservation at six months. Ann Otol Rhinol Laryngol. 2006;115:74–80.CrossRefPubMedGoogle Scholar
  31. 31.
    Lott DG, Dan O, Lu L, et al. Long-term laryngeal allograft survival using low-dose everolimus. Oto-HNS. 2010;142:72–8.Google Scholar
  32. 32.
    Lott DG, Khariwala S, Dan O, et al. Ten-month laryngeal allograft survival using pulsed everolimus and anti-αβ TCR antibody immunosuppression. Ann Otol Rhinol Laryngol. 2011;120:131–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Genden EM, Mackinnon SE, Yu S, et al. Portal venous ultraviolet B-irradiated donor alloantigen prevents rejection in circumferential rat tracheal allografts. Otolaryngol Head Neck Surg. 2001;124:481–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Gorti GK, Birchall MA, Haverson K, et al. A preclinical model for laryngeal transplantation: anatomy and mucosal immunology of the porcine larynx. Transplantation. 1999;68:1638–42.CrossRefPubMedGoogle Scholar
  35. 35.
    Rees LE, Ayoub O, Haverson K, et al. Differential major histocompatibility complex class II locus expression on human laryngeal epithelium. Clin Exp Immunol. 2003;134:497–502.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Friedman AD, Dan O, Drazba JA, et al. Quantitative analysis of OX62-positive dendritic cell distribution in the rat laryngeal complex. Ann Otol Rhinol Laryngol. 2007;116(6):449–56.CrossRefPubMedGoogle Scholar
  37. 37.
    Govindaraj S, Gordon R, Genden EM. Effect of fibrin matrix and vascular endothelial growth factor on reepithelialization of orthotopic murine tracheal transplants. Ann Otol Rhinal Laryngol. 2004;113:797–804.CrossRefGoogle Scholar
  38. 38.
    Lott DG, Dan O, Lu L, et al. Decoy NF-kB fortified immature dendritic cells maintain laryngeal allograft integrity and provide enhancement of regulatory T-cells. Laryngoscope. 2010;120(1):44–52.PubMedGoogle Scholar
  39. 39.
    Xu MQ, Suo YP, Gong JP, et al. Prolongation of liver allograft survival by dendritic cells modified with NF-kB decoy oligodeoxynucleotides. World J Gastroenterol. 2004;10:2361–8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tiao MM, Lu L, Tao R, Wang L, Fung JJ, Qian S. Prolongation of cardiac allograft survival by systemic administration of immature recipient dendritic cells deficient in NFkB activity. Ann Surg. 2005;241:497–505.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Macchiarini P, Jungebluth P, Go T, et al. Clinical transplantation of a tissue-engineered airway. Lancet. 2008;372(9655):2023–30.CrossRefPubMedGoogle Scholar
  42. 42.
    Huber JE, Spievack A, Simmons-Byrd A, et al. Extracellular matrix as a scaffold for laryngeal reconstruction. Ann Otol Rhinol Laryngol. 2003;112(5):428–33.CrossRefPubMedGoogle Scholar
  43. 43.
    Baiguera S, Gonfiotti A, Jaus M, et al. Development of bioengineered human larynx. Biomaterials. 2011;32(19):4433–42.CrossRefPubMedGoogle Scholar
  44. 44.
    Stavroulaki P, Birchall M. Comparative study of the laryngeal innervation in hwnans and animal employed in laryngeal transplantation research. J Laryngol Otol. 2001;115:257–66.CrossRefPubMedGoogle Scholar
  45. 45.
    Marie JP, Tardif C, Lerosey Y, et al. Selective resection of the phrenic nerve roots in rabbits: part II: respiratory effects. Respir Physiol. 1997;109:139–48.CrossRefPubMedGoogle Scholar
  46. 46.
    Marie J-P, Lacoume Y, Laquerrie’re A, et al. Diaphragmatic effects of selective resection of the upper phrenic nerve root in dogs. Respir Physiol Neurobiol. 2006;154:419–30.CrossRefPubMedGoogle Scholar
  47. 47.
    Marie J, Lacoume Y, Magnier P, et al. Selective bilateral motor reinnervation of the canine larynx. Laryngo-Rhino-Otologie. 2000;79:S188–9.Google Scholar
  48. 48.
    Marie JP. Nerve reconstruction. In: Remacle M, Eckel HE, editors. Surgery of larynx and trachea. Heidelberg: Springer; 2010. p. 279–94.Google Scholar
  49. 49.
    Blumin JH, Ye M, Berke GS, et al. Recovery of laryngeal sensation after superior laryngeal nerve anastomosis. Laryngoscope. 1999;109:1637–41.CrossRefPubMedGoogle Scholar
  50. 50.
    Lorenz RR, Strome M. Total laryngeal transplant explanted: 14 years of lessons learned. Otolaryngol Head Neck Surg. 2014;150:509–11.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Otolaryngology Head and Neck SurgeryMayo Clinic ArizonaPhoenixUSA
  2. 2.Head and Neck InstituteCleveland ClinicClevelandUSA

Personalised recommendations