Advertisement

Halogens in Terrestrial and Cosmic Geochemical Systems: Abundances, Geochemical Behaviors, and Analytical Methods

  • Jacob J. HanleyEmail author
  • Kenneth T. Koga
Chapter
Part of the Springer Geochemistry book series (SPRIGEO)

Abstract

The aims of this review chapter are to (i) summarize the distribution of halogens in different fluid (surficial, formation and crystalline shield waters, metamorphic, magmatic-hydrothermal-geothermal) and solid (oceanic and continental crust, mantle and core) domains of the Earth, and various extra-terrestrial materials and bodies (meteorites, planets and moons, and the Sun); (ii) briefly discuss characteristic fractionation processes; and direct the reader to other chapters in this volume; (iii) provide an estimate of the total halogen abundance for the Earth and in its dominant reservoirs contributing to the Earth’s halogen endowment; and (iv) discuss some missing observations that could further improve our understanding of halogen abundances and geochemical systematics. Determination of the distribution of the non-radioactive halogen elements (fluorine, F; chlorine, Cl; bromine, Br; and iodine, I) in, and the geochemical processes controlling their mass transfer between, solid and fluid repositories on Earth and in extraterrestrial environments has seen increasing attention in recent years. In part, this has been enabled by the development of dedicated analytical methodologies (e.g., in situ beam methods, secondary ion mass-spectrometer [SIMS], laser ablation-inductively coupled mass-spectrometer [LA-ICPMS], combined noble gas-halogen methods) that can provide a low detection level, accurate and precise determinations of halogen concentrations, and their isotope systematics in complex matrices (e.g., fluid inclusions, glasses, and minerals). However, a key motivation for this method development stems from an increased awareness of the value in halogen characterization for studying specific processes in Earth’s hydrosphere, crust, mantle, and core (e.g., crustal and mantle metasomatism; ore metal transfer; magmatic differentiation and volatile exsolution; fluid reservoir contamination and fluid mixing; mineral-melt-fluid partitioning; and basinal fluid evolution) in which the chemical and isotopic properties of the halogens provide significant advantages over other element groups. These properties include their (i) differential (i.e., temperature- and melt composition-dependent) incompatibility during fluid-melt and mineral-melt partitioning; (ii) collectively highly mobile and volatile nature but with only a few processes capable of fractionating the halogens from one another or leading to significant halogen mass transfer from one repository to another (e.g., the formation of evaporites, fluid phase separation [immiscibility, boiling], crystallization and degassing of magmas, subduction devolatilization and metamorphism); and (iii) strong systematic covariance of Cl and Br, but commonly differential behaviors of F and I (in response to organic processes) in most fluids in the hydrosphere, sediments, crustal rocks in general, the mantle, and mantle-derived lavas. Mass balance calculations show that F is dominantly hosted by mantle and crust, while Cl and Br show nearly identical distribution patterns in which a total of the seawater, formation waters, and evaporites comprise more than half of the Earth’s halogen budget. Experimentally determined metal-silicate partition coefficients suggest that a significant quantity of I is potentially hosted by the Earth’s core.

Notes

Glossary of acronyms

BSE

Bulk silicate earth

CC

Continental crust

CF

Continuous flow

DM

Depleted mantle

EMPA

Electron microprobe analyzer

ENAA

Epithermal neutron activation analysis

GC

Gas chromatography

IC

Ion chromatography

ICPMS

Inductively coupled mass spectrometry

IMA

International mineralogical association

INAA

Instrumental neutron activation analysis

IRMS

Isotope ratio mass spectrometry

LA-ICP-IDMS

Laser ablation inductively coupled plasma isotope dilution mass spectrometry

LA-ICPMS

Laser ablation inductively coupled mass spectrometry

LCC

Lower continental crust

MORB

Mid-ocean ridge basalt

NAA

Instrumental neutron activation

NG-MS

Noble gas mass spectrometry

PAA

Photon activation analysis

PGA

Prompt gamma-ray analysis

PIXE

Proton induced X-ray emission

RNAA

Radiochemical neutron activation analysis

RPAA

Radiochemical photon activation analysis

SE

Ion-selective electrode

SIMS

Secondary ion mass spectrometry

STP

Standard temperature and pressure

TIMS

Thermal ionization mass spectrometry

TOF

Time-of-flight

TXRF

Total reflection X-ray fluorescence analysis

UCC

Upper continental crust

UHP/UHT

Ultra high pressure/Ultra high temperature

XRF

X-ray fluorescence

References

  1. Adam J, Turner M, Hauri EH, Turner S (2016) Crystal/melt partitioning of water and other volatiles during the near-solidus melting of mantle peridotite: Comparisons with non-volatile incompatible elements and implications for the generation of intraplate magmatism. Am Mineral 101(4):876–888CrossRefGoogle Scholar
  2. Agranier A, Blichert-Toft J, Graham D, Debaille V, Schiano P, Albarède F (2005) The spectra of isotopic heterogeneities along the Mid-Atlantic Ridge. Earth Planet Sci Lett 238:96–109CrossRefGoogle Scholar
  3. Aiuppa A, Baker DR, Webster JD (2009) Halogens in volcanic systems. Chem Geol 263(1):1–8CrossRefGoogle Scholar
  4. Allègre CJ, Poirier JP, Humler E (1995) The chemical composition of the Earth. Earth Planet Sci Lett 134:515–526CrossRefGoogle Scholar
  5. Alletti M, Baker DR, Freda C (2007) Halogen diffusion in a basaltic melt. Geochim Cosmochim Acta 71:3570–3580CrossRefGoogle Scholar
  6. Álvarez F, Reich M, Pérez-Fodich A, Snyder G, Muramatsu Y, Vargas G, Fehn U (2015) Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin. Geochim Cosmochim Acta 161:50–70CrossRefGoogle Scholar
  7. Anders E, Ebihara M (1982) Solar-system abundances of the elements. Geochim Cosmochim Acta 46:2363–2380Google Scholar
  8. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214CrossRefGoogle Scholar
  9. Angcoy EC Jr, Arnórsson S (2015) Systematics of rare alkalis and Halogens in the high-temperature mahanagdong geothermal field, Leyte, Philippines. In: Proceedings World Geothermal Congress 2015Google Scholar
  10. Aranovich L, Safonov OG (2018) Halogens in high-grade metamorphism. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 713–757Google Scholar
  11. Aranovich LY, Newton RC, Manning CE (2013) Brine-assisted anatexis: experimental melting in the system haplogranite–H2O–NaCl–KCl at deep-crustal conditions. Earth Planet Sci Lett 374:111–120CrossRefGoogle Scholar
  12. Aranovich L, Prokofiev VY, Pertsev AN, Bortnikov NS, Ageeva OA (2015) Composition and origin of a K2O-rich granite melt in the Mid-Atlantic Ridge, 13°34′N: evidence from the analysis of melt inclusions and minerals of the gabbro-plagiogranite association. Dokl Earth Sci 460(2):174–179CrossRefGoogle Scholar
  13. Armytage RM, Jephcoat AP, Bouhifd MA, Porcelli D (2013) Metal–silicate partitioning of iodine at high pressures and temperatures: implications for the Earth’s core and 129Xe budgets. Earth Planet Sci Lett 373:140–149CrossRefGoogle Scholar
  14. Arzamastsev AA, Glaznev VN (2008) Plume-lithosphere interaction in the presence of an ancient sublithospheric mantle keel: an example from the Kola alkaline province. Dokl Earth Sci 419:384–387CrossRefGoogle Scholar
  15. Asman WA, Slanina J, Baard JH (1981) Meteorological interpretation of the chemical composition of rain-water at one measuring site. Water Air Soil Pollut 16(2):159–175CrossRefGoogle Scholar
  16. Baasner A, Schmidt BC, Webb SL (2013) Compositional dependence of the rheology of halogen (F, Cl) bearing aluminosilicate melts. Chem Geol 346:172–183CrossRefGoogle Scholar
  17. Baker DR, Balcone-Boissard H (2009) Halogen diffusion in magmatic systems: Our current state of knowledge. Chem Geol 263(1):82–88CrossRefGoogle Scholar
  18. Baker T, Mustard R, Fu B, Williams PJ, Dong G, Fisher L, Ryan CG (2008) Mixed messages in iron oxide–copper–gold systems of the Cloncurry district, Australia: insights from PIXE analysis of halogens and copper in fluid inclusions. Mineral Deposita 43(6):599–608CrossRefGoogle Scholar
  19. Balchan AS, Drickamer HG (1961) Effect of pressure on the resistance of iodine and selenium. J Chem Phys 34(6):1948–1949CrossRefGoogle Scholar
  20. Balcone-Boissard H, Baker DR, Villemant B, Boudon G (2009) F and Cl diffusion in phonolitic melts: influence of the Na/K ratio. Chem Geol 263:89–98CrossRefGoogle Scholar
  21. Banks DA, Yardley BW (1992) Crush-leach analysis of fluid inclusions in small natural and synthetic samples. Geochim Cosmochim Acta 56(1):245–248CrossRefGoogle Scholar
  22. Banks DA, Giuliani G, Yardley BW, Cheilletz A (2000a) Emerald mineralisation in Colombia: fluid chemistry and the role of brine mixing. Mineral Deposita 35(8):699–713CrossRefGoogle Scholar
  23. Banks DA, Green R, Cliff RA, Yardley BWD (2000b) Chlorine isotopes in fluid inclusions: determination of the origins of salinity in magmatic fluids. Geochim Cosmochim Acta 64(10):1785–1789CrossRefGoogle Scholar
  24. Barnes JD, Sharp ZD (2006) A chlorine isotope study of DSDP/ODP serpentinized ultramafic rocks: insights into the serpentinization process. Chem Geol 228:246–265CrossRefGoogle Scholar
  25. Barnes JD, Eldam R, Lee C-TA, Errico JC, Loewy S, Cisneros M (2013) Petrogenesis of serpentinites from the Franciscan Complex, Western California, USA. Lithos 178:143–157CrossRefGoogle Scholar
  26. Barnes JD, Manning C, Scambelluri M, Selverstone J (2018) The behavior of halogens during subduction-zone processes. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 549–590Google Scholar
  27. Baturin GN (1988) The geochemistry of manganese and manganese nodules in the ocean. D. Reidel, Dordrecht, p 356Google Scholar
  28. Becker VJ, Manuel OK (1972) Chlorine, bromine, iodine, and uranium in tektites, obsidians, and impact glasses. J Geophys Res 77(32):6353–6359CrossRefGoogle Scholar
  29. Behne W (1953) Untersuchungen zur Geochemie des Chlor und Brom. Geochim Cosmochim Acta 3(4):186–215CrossRefGoogle Scholar
  30. Bernini D, Audétat A, Dolejš D, Keppler H (2013) Zircon solubility in aqueous fluids at high temperatures and pressures. Geochim Cosmochim Acta 119:178–187CrossRefGoogle Scholar
  31. Beyer C, Klemme S, Wiedenbeck M, Stracke A, Vollmer C (2012) Fluorine in nominally fluorine-free mantle minerals: experimental partitioning of F between olivine, orthopyroxene and silicate melts with implications for magmatic processes. Earth Planet Sci Lett 337:1–9CrossRefGoogle Scholar
  32. Biester H, Cortizas AM, Keppler F (2006) Peatlands: evolution and records of environmental and climate changes occurrence and fate of halogens in mires. Elsevier, Boston, pp 465–478Google Scholar
  33. Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration levels of trace elements. Geochim Cosmochim Acta 62(7):1175–1193CrossRefGoogle Scholar
  34. Böhlke JK, Irwin JJ (1992a) Brine history indicated by argon, krypton, chlorine, bromine, and iodine analyses of fluid inclusions from the Mississippi valley type lead-fluorite-barite deposits at Hansonburg, New Mexico. Earth Planet Sci Lett 110(1):51–66CrossRefGoogle Scholar
  35. Böhlke JK, Irwin JJ (1992b) Laser microprobe analyses of Cl, Br, I, and K in fluid inclusions: implications for sources of salinity in some ancient hydrothermal fluids. Geochim Cosmochim Acta 56:203–225CrossRefGoogle Scholar
  36. Böhlke JK, Irwin JJ (1992c) Laser microprobe analyses of noble gas isotopes and halogens in fluid inclusions: analyses of microstandards and synthetic inclusions in quartz. Geochim Cosmochim Acta 56(1):187–201CrossRefGoogle Scholar
  37. Böhm A, Schmidt BC (2013) Fluorine and chlorine diffusion in phonolitic melt. Chem Geol 346:162–171CrossRefGoogle Scholar
  38. Boiron MC, Cathelineau M, Banks DA, Fourcade S, Vallance J (2003) Mixing of metamorphic and surficial fluids during the uplift of the Hercynian upper crust: consequences for gold deposition. Chem Geol 194(1):119–141CrossRefGoogle Scholar
  39. Boiron MC, Cathelineau M, Ruggieri G, Jeanningros A, Gianelli G, Banks DA (2007) Active contact metamorphism and CO2–CH4 fluid production in the Larderello geothermal field (Italy) at depths between 2.3 and 4 km. Chem Geol 237(3):303–328CrossRefGoogle Scholar
  40. Boneß M, Heumann KG, Haack U (1991) Cl, Br and I analyses of metamorphic and sedimentary rocks by isotope dilution mass spectrometry. Contrib Mineral Petrol 107(1):94–99CrossRefGoogle Scholar
  41. Bottomley DJ, Gregoire DC, Raven KG (1994) Saline ground waters and brines in the Canadian Shield: geochemical and isotopic evidence for a residual evaporite brine component. Geochim Cosmochim Acta 58(5):1483–1498CrossRefGoogle Scholar
  42. Bottomley DJ, Katz A, Chan LH, Starinksy A, Douglas M, Clark ID, Raven KG (1999) The origin and evolution of Canadian Shield brines: evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton. Chem Geol 155:295–320CrossRefGoogle Scholar
  43. Boulyga SF, Heumann KG (2005) Direct determination of halogens in powdered geological and environmental samples using isotope dilution laser ablation ICP-MS. Int J Mass Spectrom 242:291–296CrossRefGoogle Scholar
  44. Bowen HJM (1979) Environmental chemistry of the elements. Academic, London, p 333Google Scholar
  45. Boyce JW, Eiler JM, Channon MB (2012) An inversion-based self-calibration for SIMS measurements: application to H, F, and Cl in apatite. Am Mineral 97:1116–1128CrossRefGoogle Scholar
  46. Boyet M, Carlson RW (2006) A new geochemical model for the Earth’s mantle inferred from 146Sm-142Nd systematics. Earth Planet Sci Lett 250:254–268CrossRefGoogle Scholar
  47. Brearley AJ, Jones RH (2018) Halogens in chondritic meteorites. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 871–958Google Scholar
  48. Brearley AJ, Krot AN (2012) Metasomatism in chondritic meteorites. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock: the role of fluids in terrestrial and extraterrestrial processes. Springer, Berlin, pp 653–782Google Scholar
  49. Bromiley DW, Kohn SC (2007) Comparisons between fluoride and hydroxide incorporation in nominally anhydrous and fluorine-free mantle minerals. Geochim Cosmochim Acta, 71Google Scholar
  50. Buccianti A (2015) The FOREGS repository: modelling variability in stream water on a continental scale revising classical diagrams from CoDA (compositional data analysis) perspective. J Geochem Explor 154:94–104CrossRefGoogle Scholar
  51. Bureau H, Métrich N (2003) An experimental study of bromine behaviour in water-saturated silic melts. Geochim Cosmochim Acta 67:1689–1697CrossRefGoogle Scholar
  52. Bureau H, Kepler H, Metrich N (2000) Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemistry. Earth Planet Sci Lett 183:51–60CrossRefGoogle Scholar
  53. Cabral RA, Jackson MG, Koga KT, Rose-Koga EF, Hauri EH, Whitehouse MJ, Price AA, Day JMD, Shimizu N, Kelley KA (2014) Volatile cycling of H2O, CO2, F, and Cl in the HIMU mantle: a new window provided by melt inclusions from oceanic hot spot lavas at Mangaia, Cook Islands. Geochem Geophys Geosys 15:4445–4467CrossRefGoogle Scholar
  54. Cameron AGW (1973) Abundances of the elements in the solar system. Space Sci Rev 15:121–146CrossRefGoogle Scholar
  55. Cannat M (1993) Emplacement of mantle rocks in the seafloor at mid-ocean ridges. J Geophys Research-Solid Earth 98:4163–4172CrossRefGoogle Scholar
  56. Carpenter AB (1978) Origin and chemical evolution of brines in sedimentary basins. SPE annual fall technical conference and exhibition, Society of Petroleum EngineersGoogle Scholar
  57. Carpenter AB, Trout ML, Pickett EE (1974) Preliminary report on the origin and chemical evolution of lead-and zinc-rich oil field brines in central Mississippi. Econ Geol 69(8):1191–1206CrossRefGoogle Scholar
  58. Carroll MR, Webster JD (1994) Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas. Rev Mineral Geochem 30(1):231–279Google Scholar
  59. Cattermole PJ, Fuge R (1969) The abundances and distribution of fluorine and chlorine in a layered intrusion at Rhiw. North Wales. Geochim Cosmochim Acta 33(10):1295–1298CrossRefGoogle Scholar
  60. Cawse PA (1987) Trace and major elements in the atmosphere at rural locations in Great Britain, 1972–1981. Spec Publ Br Ecol Soc 1987Google Scholar
  61. Channer DMD, Spooner ETC (1992) Analysis of fluid inclusion leachates from quartz by ion chromatography. Geochim Cosmochim Acta 56:249–259CrossRefGoogle Scholar
  62. Channer DMD, Bray CJ, Spooner ETC (1999) Intergrated cation-anion/volatile fluid inclusion analysis by gas and ion chromatography; methodology and examples. Chem Geol 154:59–82CrossRefGoogle Scholar
  63. Chen Y, Zhang Y, Liu Y, Guan Y, Eiler J, Stolper EM (2015) Water, fluorine, and sulfur concentrations in the lunar mantle. Earth Planet Sci Lett 427:37–46CrossRefGoogle Scholar
  64. Connolly CA, Walter LM, Baadsgaard H, Longstaffe FJ (1990) Origin and evolution of formation waters, Alberta basin, western Canada sedimentary basin. I. Chemistry. Appl Geochem 5(4):375–395CrossRefGoogle Scholar
  65. Correns CW (1956) The geochemistry of the halogens. Phys Chem Earth 1:181–233CrossRefGoogle Scholar
  66. Cuoco E, Tedesco D, Poreda RJ, Williams JC, De Francesco S, Balagizi C, Darrah TH (2013) Impact of volcanic plume emissions on rain water chemistry during the January 2010 Nyamuragira eruptive event: implications for essential potable water resources. J Hazard Mater 244:570–581CrossRefGoogle Scholar
  67. Dalou C, Koga KT, Shimizu N, Boulon J, Devidal JL (2012) Experimental determination of F and Cl partitioning between lherzolite and basaltic melt. Contrib Mineral Petrol 163(4):591–609CrossRefGoogle Scholar
  68. Dalou C, Koga KT, Le Voyer M, Shimizu N (2014) Contrasting partition behavior of F and Cl during hydrous mantle melting: implications for Cl/F signature in arc magmas. Prog Earth Planet Sci 1(1):1–7CrossRefGoogle Scholar
  69. Dalou C, Le Losq C, Mysen BO, Cody GD (2015a) Solubility and solution mechanisms of chlorine and fluorine in aluminosilicate melts at high pressure and high temperature. Am Mineral 100(10):2272–2283CrossRefGoogle Scholar
  70. Dalou C, Mysen BO, Foustoukos D (2015b) In-situ measurements of fluorine and chlorine speciation and partitioning between melts and aqueous fluids in the Na2O-Al2O3-SiO2-H2O system. Am Mineral 100(1):47–58CrossRefGoogle Scholar
  71. Dawson JB, Fuge R (1980) Halogen content of some African primary carbonatites. Lithos 13(2):139–143CrossRefGoogle Scholar
  72. Debret B, Koga KT, Nicollet C, Andreani M, Schwartz S (2014) F, Cl and S input via serpentinite in subduction zones: implications for the nature of the fluid released at depth. Terra Nova 26:96–101CrossRefGoogle Scholar
  73. Debret B, Koga KT, Cattani F, Nicollet C (2015) Volatile (Li, B, F and Cl) mobility during amphibole breakdown in subduction zones. Lithos 244:165–181CrossRefGoogle Scholar
  74. Déruelle B, Dreibus G, Jambon A (1992) Iodine abundances in oceanic basalts: implications for Earth dynamics. Earth Planet Sci Lett 108:217–227CrossRefGoogle Scholar
  75. Dolejš D, Baker DR (2004) Thermodynamic analysis of the system Na2O-K2O-CaO-Al2O3-SiO2-H2O-F2O−1: stability of fluorine-bearing minerals in felsic igneous suites. Contrib Mineral Petrol 146(6):762–778CrossRefGoogle Scholar
  76. Dolejš D, Baker DR (2007a) Liquidus equilibria in the system K2O-Na2O-Al2O3-SiO2-F2O−1-H2O to 100 MPa: I. Silicate-fluoride liquid immiscibility in anhydrous systems. J Petrol 48:785–806CrossRefGoogle Scholar
  77. Dolejš D, Baker DR (2007b) Liquidus equilibria in the system K2O-Na2O-Al2O3-SiO2-F2O−1-H2O to 100 MPa: II. Differentiation paths of fluorosilicic magmas in hydrous systems. J Petrol 48:807–828CrossRefGoogle Scholar
  78. Dolejš D, Zajacz Z (2018) Halogens in silicic magmas and their hydrothermal systems. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 431–543Google Scholar
  79. Dong P (2005) Halogen-element (F, Cl, and Br) behaviour in apatites, scapolite and sodalite: an experimental investigation with field applications. Ph.D. thesis, University of Saskatchewan, Saskatoon, pp 1–222Google Scholar
  80. Dreibus G, Wänke H (1987) Volatiles on Earth and Mars: a comparison. Icarus 71:225–240CrossRefGoogle Scholar
  81. Dreibus G, Wänke H (1990) Comparison of the chemistry of Moon and Mars. Adv Space Res 10:7–16CrossRefGoogle Scholar
  82. Dreibus G, Jagoutz E, Palme H, Spettel B, Wänke H (1979) Volatile and other trace element abundances in the eucrite parent body and in the Earth’s mantle: A comparison. Meteoritics 14:385Google Scholar
  83. Du Y, Ma T, Yang J, Liu L, Shan H, Cai H, Liu C, Chen L (2013) A precise analytical method for bromine stable isotopes in natural waters by GasBench II-IRMS. J Mass Spectrom 338:50–56CrossRefGoogle Scholar
  84. Edmond JM, Measures C, McDuff RE, Chan LH, Collier R, Grant B (1979) Ridge crest hydrothermal activity and the balances of the major and minor elements in the ocean; the Galapagos data. Earth Planet Sci Lett 46(1):1–18CrossRefGoogle Scholar
  85. Edmunds W (1996) Bromine geochemistry of British groundwaters. Mineral Mag 60(399):275–284CrossRefGoogle Scholar
  86. Edmunds WM, Kay RLF, Miles DL, Cook JM (1987) The origin of saline groundwaters in the Carnmenellis Granite, Cornwall (UK): Further evidence from minor and trace elements. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geological Association of Canada Special Paper 33, pp 127–143Google Scholar
  87. Egeberg PK, Aagaard P (1989) Origin and evolution of formation waters from oil fields on the Norwegian shelf. Appl Geochem 4(2):131–142CrossRefGoogle Scholar
  88. Eggenkamp H (2014) The geochemistry of stable chlorine and bromine isotopes. Springer, BerlinCrossRefGoogle Scholar
  89. Eggenkamp HGM, Coleman ML (2000) Rediscovery of classical methods and their application to the measurement of stable bromine isotopes in natural samples. Chem Geol 167:393–402CrossRefGoogle Scholar
  90. Eggenkamp HGM, Kreulen R, Koster van Groos AF (1995) Chlorine stable isotope fractionation in evaporites. Geochim Cosmochim Acta 59:5169–5175CrossRefGoogle Scholar
  91. Elderfield H, Truesdale VW (1980) On the biophilic nature of iodine in seawater. Earth Planet Sci Lett 50(1):105–114CrossRefGoogle Scholar
  92. Enami M, Liou JG, Bird DK (1992) Cl-bearing amphibole in the Salton Sea geothermal system, California. Can Mineral 30(4):1077–1092Google Scholar
  93. Evans KA, Mavrogenes JA, O’Neill HSC et al (2008) A preliminary investigation of chlorine XANES in silicate glasses. Geochem Geophys Geosys 9:Q10003Google Scholar
  94. Fabbrizio A, Stalder R, Hametner K, Günther D, Marquardt K (2013) Experimental partitioning of halogens and other trace elements between olivine, pyroxenes, amphibole and aqueous fluid at 2 GPa and 900–1,300 C. Contrib Mineral Petrol 166(2):639–653CrossRefGoogle Scholar
  95. Fairmaid AM, Kendrick MA, Phillips D, Fu B (2011) The origin and evolution of mineralizing fluids in a sediment-hosted orogenic-gold deposit, Ballarat East, Southeastern Australia. Econ Geol 106(4):653–666CrossRefGoogle Scholar
  96. Fehn U, Lu Z, Tomaru H (2006) Data report: 129I/I ratios and halogen concentrations in pore water of Hydrate Ridge and their relevance for the origin of gas hydrates: a progress report. In: Trehu AM, Bohrmann G, Torres ME, Colwell FS (eds) Proceedings of the ocean drilling program, Scientific results 204, pp 1–25Google Scholar
  97. Fisher RS, Kreitler CW (1987) Geochemistry and hydrodynamics of deep-basin brines, Palo Duro Basin, Texas, USA. Appl Geochem 2(5):459–476CrossRefGoogle Scholar
  98. Foley SF, Taylor WR, Green DH (1986) The effect of fluorine on phase relationships in the system KAlSiO4-Mg2SiO4-SiO2 at 28 kbar and the solution mechanism of fluorine in silicate melts. Contrib Mineral Petrol 93:46–55CrossRefGoogle Scholar
  99. Fontes JC, Matray JM (1993) Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts. Chem Geol 109(1):149–175CrossRefGoogle Scholar
  100. Forestini M, Goriely S, Jorissen A (1992) Fluorine production in thermal pulses on the asymptotic giant branch. Astron Astrophys 261:157–163Google Scholar
  101. Frape SK, Fritz P (1982) The chemistry and isotopic compositions of saline groundwaters from the Sudbury Basin, Ontario. Can J Earth Sci 19:645–661CrossRefGoogle Scholar
  102. Frape SK, Fritz P (1987) Geochemical trends for groundwaters from the Canadian Shield. In: Saline water and gases in crystalline rocks. Geological Association of Canada, Ottawa, vol 33, pp 19–38Google Scholar
  103. Frape SK, Fritz P, McNutt RH (1984) Water-rock interaction and chemistry of groundwaters from the Canadian Shield. Geochim Cosmochim Acta 48:1617–1627CrossRefGoogle Scholar
  104. Frezzotti ML, Touret JL (2014) CO2, carbonate-rich melts, and brines in the mantle. Geosci Front 5(5):697–710CrossRefGoogle Scholar
  105. Fu B, Kendrick MA, Fairmaid AM, Phillips D, Wilson CJL, Mernagh TP (2012) New constraints on fluid sources in orogenic gold deposits, Victoria Australia. Mineral Petrol 163:427–447CrossRefGoogle Scholar
  106. Fuge R (1974) Bromine. Handbook of geochemistry 100:3Google Scholar
  107. Fuge R (1988) Sources of halogens in the environment, influences on human and animal health. Environ Geochem Health 10(2):51–61CrossRefGoogle Scholar
  108. Fuge R (2005) Soils and iodine deficiency. In: Selinus O (ed) Essentials of medical geology. Springer, Heidelberg, p 417Google Scholar
  109. Fuge R, Johnson CC (1986) The geochemistry of iodine—a review. Environ Geochem Health 8(2):31–54CrossRefGoogle Scholar
  110. Fuge R, Johnson CC, Phillips WJ (1978) Iodine in granitic and associated rocks. Chem Geol 22:347–352CrossRefGoogle Scholar
  111. Ganapathy R, Keays RR, Laul J, Anders E (1970) Trace elements in Apollo 11 lunar rocks: implications for meteorite influx and origin of moon. Geochim Cosmochim Acta Suppl 1:1117Google Scholar
  112. Gao S, Luo T-C, Zhang B-R, Zhang H-F, Han Y-W, Zhao Z-D, Hu Y-K (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Acta 62:1959–1975CrossRefGoogle Scholar
  113. Gelman F, Halicz L (2011) High-precision isotope ratio analysis of inorganic bromide by continuous flow MC-ICPMS. Int J Mass Spectrom 307:211–213CrossRefGoogle Scholar
  114. German CR, Von Damm KL (2003) Hydrothermal processes. In Holland HD, Turrekian KK (eds) Treatise on geochemistry, vol 6. Elsevier, Amsterdam, The Netherlands, pp 181–222Google Scholar
  115. Gerritse RG, George RJ (1988) The role of soil organic matter in the geochemical cycling of chloride and bromide. J Hydrol 101(1):83–95CrossRefGoogle Scholar
  116. Gillis KM, Meyer PS (2001) Metasomatism of oceanic gabbros by late stage melts and hydrothermal fluids: evidence from the rare earth element composition of amphiboles. Geochem Geophys Geosys 2:1012CrossRefGoogle Scholar
  117. Gleeson SA, Smith MP (2009) The sources and evolution of mineralising fluids in iron oxide–copper–gold systems, Norrbotten, Sweden: constraints from Br/Cl ratios and stable Cl isotopes of fluid inclusion leachates. Geochim Cosmochim Acta 73(19):5658–5672CrossRefGoogle Scholar
  118. Goldberg RH, Burnett DS, Furst MJ, Tombrello TA (1974) Fluorine concentrations in carbonaceous chondrites. Meteoritics 9:347Google Scholar
  119. Goldschmidt VM (1926) The laws of crystal chemistry. Naturwissenschaften 14(21):477–485CrossRefGoogle Scholar
  120. Goles GG, Anders E (1960) Iodine content of meteorites and their 129I–129Xe ages. J Geophys Res 65(12):4181–4184CrossRefGoogle Scholar
  121. Goles GG, Anders E (1961) Theories on the origin of meteorites. J Chem Educ 38(2):586Google Scholar
  122. Goles GG, Anders E (1962) Abundances of iodine tellurium and uranium in meteorites. Geochim Cosmochim Acta 26(7):723–737CrossRefGoogle Scholar
  123. Goles GG, Greenland LP, Jérome DY (1967) Abundances of chlorine, bromine and iodine in meteorites. Geochim Cosmochim Acta 31:1771–1787CrossRefGoogle Scholar
  124. Graupner T, Niedermann S, Kempe U, Klemd R, Bechtel A (2006) Origin of ore fluids in the Muruntau gold system: constraints from noble gas, carbon isotope and halogen data. Geochim Cosmochim Acta 70(21):5356–5370CrossRefGoogle Scholar
  125. Grawinkel A, Stöckhert B (1997) Hydrostatic pore fluid pressure to 9 km depth-Fluid inclusion evidence from the KTB deep drill hole. Geophys Res Lett 24(24):3273–3276CrossRefGoogle Scholar
  126. Greenland L, Lovering JF (1965) Minor and trace element abundances in chondritic meteorites. Geochim Cosmochim Acta 29(8):821–858CrossRefGoogle Scholar
  127. Groos AF van, Wyllie PJ (1969) Melting relationships in the system NaAlSi3O8-NaCl-H2O at 1 kilobar pressure, with petrological applications. J Geol 77:581–605CrossRefGoogle Scholar
  128. Gulbrandsen RA (1966) Chemical composition of phosphorites of the phosphoria formation. Geochim Cosmochim Acta 30(8):769–778CrossRefGoogle Scholar
  129. Hall DNB, Noyes RW (1969) Observation of hydrogen fluoride in sunspots and the determination of the solar fluorine abundance. Astrophys Lett 4:143Google Scholar
  130. Hall DNB, Noyes RW (1972) The identification of the 1-0 and 2-1 Bands of HCI in the infrared sunspot spectrum. Astrophys J 175:L95–L97CrossRefGoogle Scholar
  131. Hall GEM, MacLaurin AI, Vaive J (1986) The analysis of geological materials for fluorine, chlorine and sulfur using pyrohydrolysis and ion chromatrography. J Geochem Explor 26(2):177–186CrossRefGoogle Scholar
  132. Hammerli J, Rusk B, Spandler C, Emsbo P, Oliver NHS (2013) In situ quantification of Br and Cl in minerals and fluid inclusions by LA-ICP-MS: a powerful tool to identify fluid sources. Chem Geol 337–338:75–87CrossRefGoogle Scholar
  133. Hand KP (2018) Halogens on and within the ocean worlds of the outer solar system. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle, Springer, Berlin, pp 997–1016Google Scholar
  134. Hanley JJ, Mungall JE, Bray CJ, Gorton MP (2004) The origin of bulk and water-soluble Cl and Br enrichments in ore-hosting Sudbury Breccia in the Fraser Copper Zone, Strathcona Embayment, Sudbury, Ontario, Canada. Can Mineral 42(6):1777–1798CrossRefGoogle Scholar
  135. Hanley JJ, Pettke T, Mungall JE, Spooner ET (2005) The solubility of platinum and gold in NaCl brines at 1.5 kbar, 600 to 800 C: a laser ablation ICP-MS pilot study of synthetic fluid inclusions. Geochim Cosmochim Acta 69(10):2593–2611CrossRefGoogle Scholar
  136. Hanley JJ, Mungall JE, Pettke T, Spooner ET, Bray CJ (2008) Fluid and halide melt inclusions of magmatic origin in the ultramafic and lower banded series, stillwater complex, Montana, USA. J Petrol 49(6):1133–1160CrossRefGoogle Scholar
  137. Hart SR, Zindler A (1986) In search of a bulk-Earth composition. Chem Geol 57:247–267CrossRefGoogle Scholar
  138. Hart SR, Hauri EH, Oschmann LA, Whitehead JA (1992) Mantle plumes and Entrainment: isotopic evidence. Science 256:517–520CrossRefGoogle Scholar
  139. Hauri E, Wang J, Dixon J, King PL, Mandeville C, Newman S (2002) SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 182:99–114CrossRefGoogle Scholar
  140. Hauri EH (2002) SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem Geol 183:115–141CrossRefGoogle Scholar
  141. Hauri EH, Gaetani GA, Green TH (2006) Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet Sci Lett 248:715–734CrossRefGoogle Scholar
  142. Hauri EH, Saal AE, Rutherford MJ, Van Orman JA (2015) Water in the Moon’s interior: truth and consequences. Earth Planet Sci Lett 409:252–264CrossRefGoogle Scholar
  143. Hauri EH, Weinreich T, Saal AE, Rutherford M, Van Orman JA (2011) High pre-eruptive water contents preserved in lunar melt inclusions. Science 333:213CrossRefGoogle Scholar
  144. Heinrich CA, Ryan CG, Mernagh TP, Eadington PJ (1992) Segregation of ore metals between magmatic brine and vapor: a fluid inclusion study using PIXE microanalysis. Econ Geol 87:1566–1583CrossRefGoogle Scholar
  145. Heinrich CA, Pettke T, Halter WE, Aigner-Torres M, Audétat A, Günther D, Hattendorf B, Bleiner D, Guillong M, Horn I (2003) Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim Cosmochim Acta 67(18):3473–3497CrossRefGoogle Scholar
  146. Herut B, Starinsky A, Katz A, Bein A (1990) The role of seawater freezing in the formation of subsurface brines. Geochim Cosmochim Acta 54(1):13–21CrossRefGoogle Scholar
  147. Hervig RL, Dunbar NW, Westrich HR, Kyle PR (1989) Pre-eruptive water content of rhyolitic magmas as determined by ion microprobe analyses of melt inclusions in phenocrysts. J Volcanol Geotherm Res 36:293–302CrossRefGoogle Scholar
  148. Holtz F, Dingwell DB, Behrens H (1993) Effects of F, B2O3 and P2O5 on the solubility of water in haplogranite melts compared to natural silicate melts. Contrib Mineral Petrol 113(4):492–501CrossRefGoogle Scholar
  149. Horn MK, Adams JA (1966) Computer-derived geochemical balances and element abundances. Geochim Cosmochim Acta 30(3):279–297CrossRefGoogle Scholar
  150. Hurwitz S, Mariner RH, Fehn U, Snyder GT (2005) Systematics of halogen elements and their radioisotopes in thermal springs of the cascade range, Central Oregon, Western USA. Earth Planet Sci Lett 235(3):700–714CrossRefGoogle Scholar
  151. Icenhower JP, London K (1997) Partitioning of fluorine and chlorine between biotite and granitic melt: experimental calibration at 200 Mpa H2O. Contrib Mineral Petrol 127:17–29CrossRefGoogle Scholar
  152. Irwin JJ, Roedder E (1995) Diverse origins of fluid in magmatic inclusions at Bingham (Utah, USA), Butte (Montana, USA), St. Austell (Cornwall, UK), and Ascension Island (mid-Atlantic, UK), indicated by laser microprobe analysis of Cl, K, Br, I, Ba + Te, U, Ar, Kr, and Xe. Geochim Cosmochim Acta 59(2):295–312CrossRefGoogle Scholar
  153. Ito E, Anderson AT Jr (1983) Submarine metamorphism of gabbros from the Mid-Cayman Rise: petrographic and mineralogic constraints on hydrothermal processes at slow-spreading ridges. Contrib Miner Petrol 82(4):371–388CrossRefGoogle Scholar
  154. Ito E, Harris DM, Anderson AT (1983) Alteration of oceanic crust and geologic cycling of chlorine and water. Geochim Cosmochim Acta 47(9):1613–1624CrossRefGoogle Scholar
  155. Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettel B, Lorenz V, Waenke H (1979) The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. In: Merrill RB, Bogard DD, Hoerz F, McKay DS, Robertson PC (eds) Proceedings of the lunar and planetary science conference, vol 2. Pergamon, New York, pp 2031–2050Google Scholar
  156. Jambon A, Zimmermann JL (1990) Water in oceanic basalts: evidence for dehydration of recycled crust. Earth Planet Sci Lett 101(2):323–331CrossRefGoogle Scholar
  157. Jambon A, Déruelle B, Dreibus G, Pineau F (1995) Chlorine and bromine abundance in MORB: the contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and implications for chlorine geodynamic cycle. Chem Geol 126:101–117CrossRefGoogle Scholar
  158. Jarosewich E (2010) Chemical analyses of meteorites at the Smithsonian Institution: an update. Meteorit Planet Sci 41:1381–1382CrossRefGoogle Scholar
  159. Joachim B, Pawley A, Lyon IC, Marquardt K, Henkel T, Clay PL, Ruzié L, Burgess R, Ballentine CJ (2015) Experimental partitioning of F and Cl between olivine, orthopyroxene and silicate melt at Earth’s mantle conditions. Chem Geol 416:65–78CrossRefGoogle Scholar
  160. John T, Layne GD, Haase KM, Barnes JD (2010) Chlorine isotope evidence for crustal recycling into the Earth’s mantle. Earth Planet Sci Lett 298:175–182CrossRefGoogle Scholar
  161. John T, Scambelluri M, Frische M, Barnes JD, Bach W (2011) Dehydration of subducting serpentinite: implications for halogen mobility in subduction zones and the deep halogen cycle. Earth Planet Sci Lett 308:65–76CrossRefGoogle Scholar
  162. Johns WD, Huang WH (1967) Distribution of chlorine in terrestrial rocks. Geochim Cosmochim Acta 31(1):35–49CrossRefGoogle Scholar
  163. Johnson MC, Anderson AT, Rutherford MJ (1993) Pre-eruptive volatile contents of magmas. In: Carroll MR, Holloway JR (eds) Volatiles in magmas. Mineralogical Society of America, Washington, DC, pp 281–330Google Scholar
  164. Johnson LH, Burgess R, Turner G, Milledge HJ, Harris JW (2000) Noble gas and halogen geochemistry of mantle fluids: comparison of African and Canadian diamonds. Geochim Cosmochim Acta 64(4):717–732CrossRefGoogle Scholar
  165. Johnson KTM, Reynolds JR, Vonderhaar DL, Smith DK, Kong LSL (2002) Petrological systematics of submarine basalt glasses fromt Puna Ridge, Hawaii: implications for rift zone plumbing and magmatic processes. In: Takahashi E et al (eds) Hawaiian volcanoes: deep underwater perspectives, geophysical monograph, vol 128. American Geophysical Union, Washington, DC, pp 143–159CrossRefGoogle Scholar
  166. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC, Boca RatonGoogle Scholar
  167. Kamenetsky MB, Sobolev AV, Kamenetsky VS, Maas R, Danyushevsky LV, Thomas R, Pokhilenko NP, Sobolev NV (2004) Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology 32:845CrossRefGoogle Scholar
  168. Kamenetsky VS, Mitchell RH, Maas R, Giuliani A, Gaboury D, Zhitova L (2015) Chlorine in mantle-derived carbonatite melts revealed by halite in the St.-Honoré intrusion (Québec, Canada). Geology 43(8):687–690CrossRefGoogle Scholar
  169. Kamineni DC (1986) A petrochemical study of calcic amphiboles from the East Bull Lake anorthosite-gabbro layered complex, District of Algoma, Ontario. Contrib Mineral Petrol 93(4):471–481CrossRefGoogle Scholar
  170. Kamineni DC, Gascoyne M, Melnyk TW, Frape SK, Blomqvist R (1992) Cl and Br in mafic and ultramafic rocks: significance for the origin of salinity in groundwater. In: Water–rock interaction. Proceedings of the 7th international symposium on water–rock interaction, Park City, UT 1: 801–804Google Scholar
  171. Kastner M, Elderfield H, Martin JB, Suess E, Kvenvolden KA, Garrison RE (1990) Diagenesis and interstitial-water chemistry at the Peruvian continental margin—major constituents and strontium isotopes. In: Suess E, von Huene R (eds) Proceedings of the ocean drilling program, Scientific results. 112:413–440Google Scholar
  172. Kato F, Ozaki H, Ebihara M (2000) Distribution of halogens in an Antarctic ordinary chondrite, Y-74014 (H6). Antarct Meteor Res 13:121–134Google Scholar
  173. Keene W, Khalil MA, Erickson D, McCulloch A, Graedel TE, Lobert JM, Aucott ML, Gong SL, Harper DB, Kleiman G, Midgley P (1999) Composite global emissions of reactive chlorine from anthropogenic and natural sources: reactive chlorine emissions inventory. J Geophys Res: Atmos 104(7):8429–8440CrossRefGoogle Scholar
  174. Keene WC, Stutz J, Pszenny AA, Maben JR, Fischer EV, Smith AM, von Glasow R, Pechtl S, Sive BC, Varner RK (2007) Inorganic chlorine and bromine in coastal New England air during summer. J Geophy Res: Atmos. 112(D10). https://doi.org/10.1029/2006JD007689
  175. Keller J, Zaitsev AN (2012) Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai, Tanzania: composition of lavas from 1988 to 2007. Lithos 148:45–53Google Scholar
  176. Kelley KA, Kingsley R, Schilling J-G (2013) Composition of plume-influenced mid-ocean ridge lavas and glasses from the Mid-Atlantic Ridge, East Pacific Rise, Galápagos Spreading Center, and Gulf of Aden. Geochem Geophys Geosys 14:223–242CrossRefGoogle Scholar
  177. Kendrick MA (2012) High precision Cl, Br and I determinations in mineral standards using the noble gas method. Chem Geol 292–293:116–126CrossRefGoogle Scholar
  178. Kendrick MA (2018) Halogens in seawater, marine sediments and the altered oceanic lithosphere. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 591–648Google Scholar
  179. Kendrick MA, Burnard P (2013) Noble gases and halogens in fluid inclusions: a journey through the Earth’s crust. The noble gases as geochemical tracers. Springer, Berlin, pp 319–369CrossRefGoogle Scholar
  180. Kendrick MA, Phillips D (2009) New constraints on the release of noble gases during in vacuo crushing and application to scapolite Br–Cl–I and 40Ar/39Ar age determinations. Geochim Cosmochim Acta 73(19):5673–5692CrossRefGoogle Scholar
  181. Kendrick MA, Burgess R, Pattrick RAD, Turner G (2001a) Fluid inclusion noble gas and halogen evidence on the origin of Cu-Porphyry mineralising fluids. Geochim Cosmochim Acta 65:2651–2668CrossRefGoogle Scholar
  182. Kendrick MA, Burgess R, Pattrick RA, Turner G (2001b) Halogen and Ar–Ar age determinations of inclusions within quartz veins from porphyry copper deposits using complementary noble gas extraction techniques. Chem Geol 177(3):351–370CrossRefGoogle Scholar
  183. Kendrick MA, Burgess R, Leach D, Pattrick RA (2002a) Hydrothermal fluid origins in Mississippi valley-type ore districts: combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the Illinois-Kentucky fluorspar district, Viburnum Trend, and Tri-State districts, midcontinent United States. Econ Geol 97(3):453–469CrossRefGoogle Scholar
  184. Kendrick MA, Burgess R, Pattrick RA, Turner G (2002b) Hydrothermal fluid origins in a fluorite-rich Mississippi Valley-type district: combined noble gas (He, Ar, Kr) and halogen (Cl, Br, I) analysis of fluid inclusions from the South Pennine ore field United Kingdom. Econ Geol 97(3):435–451CrossRefGoogle Scholar
  185. Kendrick MA, Duncan R, Phillips D (2006a) Noble gas and halogen constraints on mineralizing fluids of metamorphic versus surficial origin: Mt Isa. Aust Chem Geol 235(3):325–351CrossRefGoogle Scholar
  186. Kendrick MA, Phillips D, Miller JM (2006b) Part I. Decrepitation and degassing behaviour of quartz up to 1560 C: analysis of noble gases and halogens in complex fluid inclusion assemblages. Geochim Cosmochim Acta 70(10):2540–2561CrossRefGoogle Scholar
  187. Kendrick MA, Baker T, Fu B, Phillips D, Williams PJ (2008) Noble gas and halogen constraints on regionally extensive mid-crustal Na–Ca metasomatism, the Proterozoic Eastern Mount Isa Block, Australia. Precambr Res 163(1):131–150CrossRefGoogle Scholar
  188. Kendrick MA, Scambelluri M, Honda M, Phillips D (2011) High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction. Nat Geosci 4:807–812CrossRefGoogle Scholar
  189. Kendrick MA, Kamenetsky VS, Phillips D, Honda M (2012) Halogen systematics (Cl, Br, I) in mid-ocean ridge basalts: a Macquarie Island case study. Geochim Cosmochim Acta 81:82–93CrossRefGoogle Scholar
  190. Kendrick MA, Jackson MG, Kent AJR, Hauri EH, Wallace PJ, Woodhead JD (2013a) Contrasting behaviours of CO2, S, H2O and halogens (F, Cl, Br, and I) in enriched-mantle melts from Pitcairn and Society seamounts. Chem Geol 370:69–81CrossRefGoogle Scholar
  191. Kendrick MA, Arculus RJ, Burnard P, Honda M (2013b) Quantifying brine assimilation by submarine magmas: examples from the Galápagos Spreading Centre and Lau Basin. Geochim Cosmochim Acta 123:150–165CrossRefGoogle Scholar
  192. Kendrick MA, Honda M, Pettke T, Scambelluri M, Phillips D, Giuliani A (2013c) Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. Earth Planet Sci Lett 365:86–96CrossRefGoogle Scholar
  193. Kendrick MA, Jackson MG, Kent AJ, Hauri EH, Wallace PJ, Woodhead J (2014) Contrasting behaviours of CO2, S, H2O and halogens (F, Cl, Br, and I) in enriched-mantle melts from Pitcairn and Society seamounts. Chem Geol 370:69–81CrossRefGoogle Scholar
  194. Kendrick MA, Honda M, Vanko DA (2015a) Halogens and noble gases in Mathematician Ridge metagabbros, NE Pacific: implications for oceanic hydrothermal root zones and global volatile cycles. Contrib Mineral Petrol 170(43):1–20Google Scholar
  195. Kendrick MA, Jackson MG, Hauri EH, Phillips D (2015b) The halogen (F, Cl, Br, I) and H2O systematics of Samoan lavas: Assimilated-seawater, EM2 and high-3He/4He components. Earth Planet Sci Lett 410:197–209CrossRefGoogle Scholar
  196. Kharaka YK, Maest AS, Carothers WW, Law LM, Lamothe PJ, Fries TL (1987) Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, USA. Appl Geochem 2(5):543–561CrossRefGoogle Scholar
  197. Klemme S (2004) Evidence for fluoride melts in Earth’s mantle formed by liquid immiscibility. Geology 32:441CrossRefGoogle Scholar
  198. Klemme S, Stalder R (2018) Halogens in the Earth’s mantle: what we know and what we don’t. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 847–869Google Scholar
  199. Klockenkämper R (1996) Total-reflection X-ray fluorescence analysis. Wiley, Hoboken, p 245Google Scholar
  200. Köhler J, Schönenberger J, Upton B, Markl G (2009) Halogen and trace-element chemistry in the Gardar Province, South Greenland: subduction-related mantle metasomatism and fluid exsolution from alkali melts. Lithos 113:731–747CrossRefGoogle Scholar
  201. Kohn SC, Dupree R, Mortuza M, Henderson C (1991) NMR evidence for five-and six-coordinated aluminum fluoride complexes in F-bearing aluminosilicate glasses. Am Mineral 76:309–312Google Scholar
  202. Koleszar AM, Saal AE, Hauri EH, Nagle AN, Liang Y, Kurz MD (2009) The volatile contents of the Galapagos plume; evidence for H2O and F open system behavior in melt inclusions. Earth Planet Sci Lett 287:442–452CrossRefGoogle Scholar
  203. Krahenbühl U, Ganapathy R, Morgan JW, Anders E (1973) Volatile elements in Apollo 16 samples: implications for highland volcanism and accretion history of the moon. Lunar Planet Sci Conf 4:1325–1348Google Scholar
  204. Kronberg BI, Nesbitt HW, Fyfe WS (1987) Mobilities of alkalis, alkaline earths and halogens during weathering. Chem Geol 60(1):41–49CrossRefGoogle Scholar
  205. Kullerud K, Erambert M (1999) Cl-scapolite, Cl-amphibole, and plagioclase equilibria in ductile shear zones at Nusfjord, Lofoten, Norway: implications for fluid compositional evolution during fluid-mineral interaction in the deep crust. Geochim Cosmochim Acta 63(22):3829–3844CrossRefGoogle Scholar
  206. Lahermo PW, Lampén PH (1987) Brackish and Saline groundwaters in Finland. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geological Association of Canada, Newfoundland, pp 103–109 (Special Paper 33)Google Scholar
  207. Land LS (1995a) The role of saline formation water in crustal cycling. Aquat Geochem 1:137–145CrossRefGoogle Scholar
  208. Land LS (1995b) Na–Ca–Cl saline formation waters, Frio Formation (Oligocene), south Texas, USA: products of diagenesis. Geochim Cosmochim Acta 59(11):2163–2174CrossRefGoogle Scholar
  209. Lassiter JC, Hauri EH, Nikogosian IK, Barsczus HG (2002) Chlorine–potassium variations in melt inclusions from Raivavae and Rapa, Austral Islands: constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust. Earth Planet Sci Lett 202:525–540CrossRefGoogle Scholar
  210. Latourrette T, Hervig RL, Holloway JR (1995) Trace-element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci Lett 135(1–4):13–30CrossRefGoogle Scholar
  211. Layne GD, Godon A, Webster JD, Bach W (2004) Secondary ion mass spectrometry for the determination of δ37Cl Part I. Ion microprobe analysis of glasses and fluids. Chem Geol 207:277–289CrossRefGoogle Scholar
  212. Layne GD, Kent AJR, Bach W (2009) Delta Cl-37 systematics of a backarc spreading system: the Lau basin. Geology 37:42–430CrossRefGoogle Scholar
  213. Le Voyer M, Rose-Koga EF, Shimizu N, Grove TL, Schiano P (2010) Two contrasting H2O-rich components in primary melt inclusions from Mount Shasta. J Petrol 51:1571–1595CrossRefGoogle Scholar
  214. Lecumberri-Sanchez P, Bodnar RJ (2018) Halogen geochemistry of ore deposits: contributions towards understanding sources and processes. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 261–305CrossRefGoogle Scholar
  215. Leisen M, Boiron M-C, Richard A, Dubessy J (2012) Determination of Cl and Br concentrations in individual fluid inclusions by combining microthermometry and LA-ICPMS analysis: implications for the origin of salinity in crustal fluids. Chem Geol 330–331:197–206CrossRefGoogle Scholar
  216. Leri AC, Mayer LM, Thornton KR, Ravel B (2014) Bromination of marine particulate organic matter through oxidative mechanisms. Geochim Cosmochim Acta 142:53–63CrossRefGoogle Scholar
  217. Li Y-H (1982) A brief discussion on the mean oceanic residence time of elements. Geochim Cosmochim Acta 46:2671–2675CrossRefGoogle Scholar
  218. Li Y-H (1991) Distribution patterns of the elements in the ocean: a synthesis. Geochim Cosmochim Acta 55:3223–3240CrossRefGoogle Scholar
  219. Lide DR (ed) (2016) CRC Handbook of chemistry and physics, 96th edn. CRC, Boca RatonGoogle Scholar
  220. Lieberman KW (1966) The determination of bromine in terrestrial and extraterrestrial materials by neutron activation analysis. Dept. of Chemistry, Kentucky Univ., LexingtonGoogle Scholar
  221. Liebscher A, Barnes J, Sharp Z (2006) Chlorine isotope vapor–liquid fractionation during experimental fluid-phase separation at 400 C/23 MPa to 450 C/42 MPa. Chem Geol 234(3):340–345CrossRefGoogle Scholar
  222. Liu Y, Tossell J (2003) Possible Al-F bonding environment in fluorine-bearing sodium aluminosilicate glasses: from calculation of 19F NMR shifts. J Phys Chem B 107(41):11280–11289CrossRefGoogle Scholar
  223. Liu CZ, Wu FY, Chung SL, Zhao ZD (2011) Fragments of hot and metasomatized mantle lithosphere in Middle Miocene ultrapotassic lavas, southern Tibet. Geology 39:923–926CrossRefGoogle Scholar
  224. Lodders K (2010) Solar system abundances of the elements. Principles and perspectives in cosmochemistry. Springer, Berlin, pp 379–417CrossRefGoogle Scholar
  225. Lodders K, Fegley B (1997) An oxygen isotope model for the composition of Mars. Icarus 126:373–394CrossRefGoogle Scholar
  226. Lodders K, Fegley B (1998) The planetary scientist’s companion. Oxford University Press, New YorkGoogle Scholar
  227. Lodders K, Palme H, Gail HP (2009) Abundances of the elements in the solar system. Astronomy and astrophysics. Springer, Berlin, pp 560–630Google Scholar
  228. Long A, Eastoe CJ, Kaufmann RS, Martin JG, Wirt L, Finley JB (1993) High-precision measurements of chlorine stable isotope ratios. Geochim Cosmochim Acta 57:2907–2912CrossRefGoogle Scholar
  229. Lundegard PD, Trevena AS (1990) Sandstone diagenesis in the Pattani Basin (Gulf of Thailand): history of water-rock interaction and comparison with the Gulf of Mexico. Appl Geochem 5(5):669–685CrossRefGoogle Scholar
  230. Lundström U, Olin Å, Nydahl F (1984) Determination of low levels of bromide in fresh water after chromatographic enrichment. Talanta 31(1):45–48CrossRefGoogle Scholar
  231. Luth RW (1988) Raman spectroscopic study of the solubility mechanisms of F in glasses in the system CaO-CaF2-SiO2. Am Mineral 73(3–4):297–305Google Scholar
  232. Luth RW, Muncill GE (1989) Fluorine in aluminosilicate systems: phase relations in the system NaAlSi3O8-CaAl2Si2O8-F2O−1. Geochim Cosmochim Acta 53(8):1937–1942CrossRefGoogle Scholar
  233. Lyubetskaya T, Korenaga J (2007) Chemical composition of Earth’s primitive mantle and its variance: 1 method and results. J Geophys Res 112:B03211Google Scholar
  234. Macpherson GL (1992) Regional variations in formation water chemistry: major and minor elements, Frio formation fluids, Texas. AAPG Bullet 76(5):740–757Google Scholar
  235. Magenheim AJ, Spivack AJ, Volpe C, Ransom B (1994) Precise determination of stable chlorine isotopic ratios in low-concentration natural samples. Geochim Cosmochim Acta 58:3117–3121CrossRefGoogle Scholar
  236. Mangler MF, Marks MA, Zaitzev AN, Eby GN, Markl G (2014) Halogens (F, Cl and Br) at Oldoinyo Lengai volcano (Tanzania): effects of magmatic differentiation, silicate–natrocarbonatite melt separation and surface alteration of natrocarbonatite. Chem Geol 365:43–53CrossRefGoogle Scholar
  237. Manheim FT, Pratt RM, McFarlin PF (1980) Composition and origin of phosphorite deposits of the Blake Plateau. Soc Econ Paleontol Mineral 29:117–137Google Scholar
  238. Manning DA (1981) The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contrib Mineral Petrol 76(2):206–215CrossRefGoogle Scholar
  239. Markl G, Bucher K (1998a) Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks. Nature 391(6669):781–783CrossRefGoogle Scholar
  240. Markl G, Bucher K (1998b) Metamorphic salt in granulites: implications for the presence and composition of fluid in the lower crust. Nature 391:781–783CrossRefGoogle Scholar
  241. Marks MAW, Wenzel T, Whitehouse MJ, Loose M, Zack T, Barth M, Worgard L, Krasz V, Eby GN, Stosnach H, Markl G (2012) The volatile inventory (F, Cl, Br, S, C) of magmatic apatite: an integrated analytical approach. Chem Geol 291:241–255CrossRefGoogle Scholar
  242. Marschik R, Kendrick MA (2015) Noble gas and halogen constraints on fluid sources in iron oxide-copper-gold mineralization: Mantoverde and La Candelaria, Northern Chile. Mineral Deposita 50(3):357–371CrossRefGoogle Scholar
  243. Martin JB, Gieskes JM, Torres M, Kastner M (1993) Bromine and iodine in Peru margin sediments and pore fluids: implications for fluid origins. Geochim Cosmochim Acta 57:4377–4389CrossRefGoogle Scholar
  244. Martin JM, Meybeck M (1979) Elemental mass-balance of material carried by major World rivers. Mar Chem 7(3):173–206CrossRefGoogle Scholar
  245. Mathez ED, Webster JD (2005) Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochim Cosmochim Acta 69(5):1275–1286CrossRefGoogle Scholar
  246. McCaffrey MA, Lazar B, Holland HD (1987) The evaporation path of seawater and the coprecipitation of Br(-) and K(+) with halite. J Sediment Res 57(5):928–937Google Scholar
  247. McCaig AM, Tritlla J, Banks DA (2000) Fluid mixing and recycling during Pyrenean thrusting: evidence from fluid inclusion halogen ratios. Geochim Cosmochim Acta 64(19):3395–3412CrossRefGoogle Scholar
  248. McDonough WF (1990) Constraints on the composition of the continental lithospheric mantle. Earth Planet Sci Lett 101(36):909Google Scholar
  249. McDonough WF (2003) Compositional model for the Earth’s core. In: Holland HD, Turrekian KK (eds) Treatise on geochemistry, vol 2. Elsevier, Amsterdam, pp 547–568CrossRefGoogle Scholar
  250. McDonough WF, Sun S-S (1995) Composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  251. McNutt RH, Frape SK, Fritz P, Jones MG, MacDonald IM (1990) The 87Sr86Sr values of Canadian shield brines and fracture minerals with applications to groundwater mixing, fracture history, and geochronology. Geochim Cosmochim Acta 54(1):205–215CrossRefGoogle Scholar
  252. Merino E (1975) Diagenesis in tertiary sandstones from Kettleman North Dome, California. I diagenetic mineralogy. J Sed Res 45(1):320–336Google Scholar
  253. Metrich N, Zanon V, Creon L, Hildenbrand A, Moreira M, Marques FO (2014) Is the “Azores Hotspot” a Wetspot? Insights from the geochemistry of fluid and melt inclusions in olivine of pico Basalts. J Petrol 55:377–393CrossRefGoogle Scholar
  254. Mi J-X, Pan Y (2018) Halogen-rich minerals: crystal chemistry and geological significances. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 123–184Google Scholar
  255. Michael PJ, Cornell WC (1998) Influence of spreading rate and magma supply on crystallization and assimilation beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. J Geophys Res 103:18325–18356CrossRefGoogle Scholar
  256. Michel A, Villemant B (2003) Determination of halogens (F, Cl, Br, I), sulfur and water in seventeen geological reference materials. Geostand Newsl 27(2):163–171CrossRefGoogle Scholar
  257. Miller TL, Zoller WH, Crowe BM, Finnegan DL (1990) Variations in trace metal and halogen ratios in magmatic gases through an eruptive cycle of the Pu’u O’o vent, Kilauea, Hawaii: July–August 1985. J Geophys Res 95(B8):12607–12615CrossRefGoogle Scholar
  258. Mittlefehldt DW (2002) Geochemistry of the ungrouped carbonaceous chondrite Tagish Lake, the anomalous CM chondrite bells, and comparison with CI and CM chondrites. Meteorit Planet Sci 37:703–712CrossRefGoogle Scholar
  259. Moine BN, Cottin J-Y, Shepard SMF, Grégoire M, O’Reilly SY, Giret A (2000) Incompatible trace element and isotopic (D/H) characteristics of amphibole-and phlogopite-bearing ultramafic to mafic xenoliths from Kerguelen Islands (TAAF, South Indian Ocean). Eur J Mineral 12:761–777Google Scholar
  260. Moldovanyi EP, Walter LM (1992) Regional trends in water chemistry, smackover formation, Southwest Arkansas: geochemical and physical controls (1). AAPG Bullet 76(6):864–894Google Scholar
  261. Möller P, Weise SM, Althaus E, Bach W, Behr HJ, Borchardt R, Bräuer K, Drescher J, Erzinger J, Faber E, Hansen BT (1997) Paleofluids and recent fluids in the upper continental crust: results from the German Continental deep drilling program (KTB). J Geophys Res: Solid Earth 102(8):18233–18254CrossRefGoogle Scholar
  262. Morad S, Ismail HB, Ros LD, Al-Aasm IS, Serrhini NE (1994) Diagenesis and formation water chemistry of Triassic reservoir sandstones from southern Tunisia. Sedimentology 41(6):1253–1272CrossRefGoogle Scholar
  263. Morgan JW, Anders E (1979) Chemical composition of Mars. Geochim Cosmochim Acta 43:1601–1610CrossRefGoogle Scholar
  264. Morrison JA (1991) Chemistry of the polyhedral boron halides and the diboron tetrahalides. Chem Rev 91(1):35–48CrossRefGoogle Scholar
  265. Mungall JE, Brenan JM (2003) Experimental evidence for the chalcophile behavior of the halogens. Can Mineral 41:207–220CrossRefGoogle Scholar
  266. Munoz JL (1984) F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits. Rev Mineral Geochem 13(1):469–493Google Scholar
  267. Muramatsu Y, Wedepohl KH (1998) The distribution of iodine in the Earth’s crust. Chem Geol 147:201–216CrossRefGoogle Scholar
  268. Muramatsu Y, Doi T, Tomaru H, Fehn U, Takeuchi R (2007) Halogen concentrations in pore waters and sediments of the Nankai Trough, Japan: implications for the origin of gas hydrates. Appl Geochem 22:534–556CrossRefGoogle Scholar
  269. Musashi M, Markl G, Kreulen R (1998) Stable chlorine-isotope analysis of rock samples: new aspects of chlorine extraction. Anal Chim Acta 362:261–269CrossRefGoogle Scholar
  270. Mysen BO, Richet P (2005) Silicate glasses and melts. Elsevier, AmsterdamGoogle Scholar
  271. Mysen BO, Virgo D (1985) Structure and properties of fluorine-bearing aluminosilicate melts: the system Na2O-Al2O3-SiO2-F at 1 atm. Contrib Mineral Petrol 91(3):205–220CrossRefGoogle Scholar
  272. Mysen BO, Cody GD, Smith A (2004) Solubility mechanisms of fluorine in peralkaline and meta-aluminous silicate glasses and in melts to magmatic temperatures. Geochim Cosmochim Acta 68(12):2745–2769CrossRefGoogle Scholar
  273. Nahnybida T, Gleeson SA, Rusk BG, Wassenaar LI (2009) Cl/Br ratios and stable chlorine isotope analysis of magmatic–hydrothermal fluid inclusions from Butte, Montana and Bingham Canyon, Utah. Mineral Deposita 44(8):837–848CrossRefGoogle Scholar
  274. Nakamoto T, Oura Y, Ebihara M (2007) Comparative study of activation analyses for the determination of trace halogens in geological and cosmochemical samples. Anal Sci 23:1113–1119CrossRefGoogle Scholar
  275. Neal C, Smith CJ, Walls J, Billingham P, Hill S, Neal M (1990) Hydrogeochemical variations in Hafren forest stream waters, mid-Wales. J Hydrol 116(1):185–200CrossRefGoogle Scholar
  276. Noll K, Dobeli M, Krahenbühl U, Grambole D, Herrmann F, Koeberl C (2003) Detection of terrestrial fluorine by proton induced gamma emission (PIGE). A rapid quantification for Antarctic meteorites. Meteorit Planet Sci 38:759–765CrossRefGoogle Scholar
  277. O’Reilly SY, Griffin WL (2012) Mantle Metasomatism. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock (Lecture notes in Earth System Sciences). Springer, Berlin, pp 471–533Google Scholar
  278. Oberti R, Ghose S (1993) Crystal-chemistry of a complex Mn-bearing alkali amphibole (tirodite’) on the verge of exsolution. Eur J Mineral 5(6):1153–1160CrossRefGoogle Scholar
  279. Palme H, Jones A (2003) Solar system abundances of the elements. In: Holland HD, Turrekian KK (eds) Treatise on geochemistry, vol 1. Elsevier, Amsterdam, pp 41–61CrossRefGoogle Scholar
  280. Palme H, O’Neill H St C (2003) Cosmochemical estimates of mantle composition. In: Holland HD, Turrekia KK (eds) Treatise on geochemistry, vol 2. Elsevier, Amsterdam, pp 1–38Google Scholar
  281. Pan Y, Dong P (2003) Bromine in scapolite-group minerals and sodalite: XRF microprobe analysis, exchange experiments, and application to skarn deposits. Can Mineral 41(2):529–540CrossRefGoogle Scholar
  282. Pauling L (1960) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Cornell University Press, IthacaGoogle Scholar
  283. Pauling L, Huggins ML (1934) Covalent radii of atoms and interatomic distances in crystals containing electron-pair bonds. Z Kristallogr-Cryst Mater 87(1):205–238Google Scholar
  284. Pearson FJ (1985) Sondierbohrung Boettstein-results of hydrochemical investigations: analysis and interpretation. Nationale Genossenschaft fuer die Lagerung Radioaktiver Abfaelle NAGRA, SwitzerlandGoogle Scholar
  285. Pearson DG, Canil D, Shirey S, Holland H, Turrekian KK (2003) Mantle samples included in volcanic rocks: xenoliths and diamond. In: Holland HD, Turrekian KK (eds) Treatise on geochemistry, vol 2. Elsevier, Amsterdam, pp 171–275CrossRefGoogle Scholar
  286. Peters MT, Baker MB, Burnett DS (1995) The partitioning of iodine between sulfide liquid and silicate liquid: implications for the cosmochemistry of iodine. Lunar Planet Sci Conf 26:1115–1116Google Scholar
  287. Peters NE, Ratcliffe ER, Tranter M (1998) Tracing solute mobility at the Panola Mountain Research Watershed, Georgia, USA. In: Kovar K, Tappeiner U, Peters NE, Craig RG (eds) Hydrology, water resources and ecology in headwaters, vol 248. IAHS, WallingfordGoogle Scholar
  288. Philippot P, Agrinier P, Scambelluri M (1998) Chlorine cycling during subduction of altered oceanic crust. Earth Planet Sci Lett 161(1):33–44CrossRefGoogle Scholar
  289. Piccoli PM, Candela PA (1993) Magmatic-Hydrothermal volatile history of the Billy Lake-Rush Creek volcano-plutonic complex, ritter range, Sierra Nevada Batholith, California. EOS Trans Am Geophys Union 74:333Google Scholar
  290. Price NB, Calvert SE (1970) Compositional variation in Pacific Ocean ferromanganese nodules and its relationship to sediment accumulation rates. Mar Geol 9(3):145–171CrossRefGoogle Scholar
  291. Price NB, Calvert SE (1977) The contrasting geochemical behaviours of iodine and bromine in recent sediments from the Namibian shelf. Geochim Cosmochim Acta 41(12):1769–1775CrossRefGoogle Scholar
  292. Pyle DM, Mather T (2009) Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: a review. Chem Geol 263:110–121CrossRefGoogle Scholar
  293. Rabinovich EM (1983) Structural role of fluorine in silicate glasses. Phys Chem Glasses 24(2):54–56Google Scholar
  294. Ramberg H (1952) Chemical bonds and distribution of cations in silicates. J Geol 1:331–355CrossRefGoogle Scholar
  295. Rampe EB, Ming DW, Blake DF et al (2017) Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars. Earth Planet Sci Lett 471:172–185. https://doi.org/10.1016/j.epsl.2017.04.021
  296. Rampe EB, Cartwright JA, McCubbin FM, Osterloo MM (2018) The role of halogens during fluid and magmatic processes on Mars. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 959–995Google Scholar
  297. Reed GW Jr (1964) Fluorine in stone meteorites. Geochim Cosmochim Acta 28:1729–1743CrossRefGoogle Scholar
  298. Reed GW Jr, Ralph OA Jr (1966) Halogens in chondrites. Geochim Cosmochim Acta 30:779–800CrossRefGoogle Scholar
  299. Renno AD, Franz L, Witzke T, Herzig PM (2004) The coexistence of melts of hydrous copper chloride, sulfide and silicate compositions in a magnesiohastingsite cumulate, TUBAF seamount, Papua New Guinea. Can Mineral 42:1–16CrossRefGoogle Scholar
  300. Ringwood AE (1962a) A model for the upper mantle. J Geophys Res: Solid Earth 67:857–867CrossRefGoogle Scholar
  301. Ringwood AE (1962b) A model for the upper mantle: 2. J Geophys Res: Solid Earth 67:4473–4478CrossRefGoogle Scholar
  302. Rose-Koga EF, Shimizu N, Devidal J, Koga KT, Le Voyer M (2008) Investigation of F, S, and Cl standards by ion probe and electron microprobe. EOS Trans Am Geophys Union 89(53), Fall Meet Suppl, Abstract V31B-2145Google Scholar
  303. Rose-Koga EF, Koga KT, Schiano P, Le Voyer M, Shimizu N, Whitehouse MJ, Clocchiatti R (2012) Mantle source heterogeneity for South Tyrrhenian magmas revealed by Pb isotopes and halogen contents of olivine-hosted melt inclusions. Chem Geol 334:266–279CrossRefGoogle Scholar
  304. Rose-Koga EF, Koga KT, Hamada M, Helouis T, Whitehouse MJ, Shimizu N (2014) Volatile (F and Cl) concentrations in Iwate olivine-hosted melt inclusions indicating low-temperature subduction. Earth Planet Space 66:81CrossRefGoogle Scholar
  305. Rose-Koga EF, Koga KT, Moreira M, Vlastelic I, Jackson MG, Whitehouse MJ, Shizimu N, Habib N (2017) Geochemical systematics of Pb isotopes, fluorine and sulfur in melt inclusions from São Miguel, Azores. Chem Geol 458:22–37Google Scholar
  306. Rosenbaum JM, Cliff RA, Coleman ML (2000) Chlorine stable isotopes: a comparison of dual inlet and thermal ionization mass spectrometric measurements. Anal Chem 72:2261–2264CrossRefGoogle Scholar
  307. Rosenthal A, Hauri EH, Hirschmann MM (2015) Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions. Earth Planet Sci Lett 412:77–87CrossRefGoogle Scholar
  308. Ross JE, Aller LH (1976) The chemical composition of the Sun. Science 191:1223–1229CrossRefGoogle Scholar
  309. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 1–64Google Scholar
  310. Ryan CG, Heinrich CA, Mernagh TP (1993) PIXE Microanalysis of fluid inclusions and its application to study ore metal segregation between magmatic brine and vapor. Nucl Instrum Methods Phys Res Sect B: Beam Interact Mat Atom 77:463–471CrossRefGoogle Scholar
  311. Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419:451–455CrossRefGoogle Scholar
  312. Saal AE, Hauri EH, Cascio ML, Van Orman JA, Rutherford MJ, Cooper RF (2008) Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454:192–195CrossRefGoogle Scholar
  313. Sakai N, Takemura K, Tsuji K (1982) Electrical properties of high-pressure metallic modification of iodine. J Phys Soc Jpn 516:1811–1816CrossRefGoogle Scholar
  314. Salminen R (ed), Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, O’Connor PJ, Olsson SÅ, Ottesen R-T, Petersell V, Plant, JA, Reeder S, Salpeteur I, Sandström H, Siewers U, Steenfelt A, Tarvainen T (2005) Geochemical atlas of Europe. Part 1: background information, methodology and maps. Geological Survey of Finland, EspooGoogle Scholar
  315. Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5:1525–2027CrossRefGoogle Scholar
  316. Sander R, Keene WC, Pszenny AA, Arimoto R, Ayers GP, Baboukas E, Cainey JM, Crutzen PJ, Duce RA, Hönninger G, Huebert BJ (2003) Inorganic bromine in the marine boundary layer: a critical review. Atmos Chem Phys 3(5):1301–1336CrossRefGoogle Scholar
  317. Sanders LL (1991) Geochemistry of formation waters from the Lower Silurian Clinton formation (Albion Sandstone), Eastern Ohio. AAPG Bullet 75(10):1593–1608Google Scholar
  318. Sarafian AR, Roden MF, Patiño-Douce AE (2013) The volatile content of Vesta: clues from apatite in eucrites. Meteorit Planet Sci 48:2135–2154CrossRefGoogle Scholar
  319. Schaller T, Dingwell DB, Keppler H, Knöller W, Merwin L, Sebald A (1992) Fluorine in silicate glasses: a multinuclear nuclear magnetic resonance study. Geochim Cosmochim Acta 56:701–707CrossRefGoogle Scholar
  320. Schauble EA, Rossman GR, Taylor HP (2003) Theoretical estimates of equilibrium chlorine-isotope fractionations. Geochim Cosmochim Acta 67(17):3267–3281CrossRefGoogle Scholar
  321. Schilling JG, Unni CK, Bender ML (1978) Origin of chlorine and bromine in the oceans. Nature 273:631–636CrossRefGoogle Scholar
  322. Schilling J, Bergeron M, Evans R (1980) Halogens in the mantle beneath the North Atlantic. Philos Trans R Soc A297:147–178CrossRefGoogle Scholar
  323. Schnetger B, Muramatsu Y (1996) Determination of halogens, with special reference to iodine, in geological and biological samples using pyrohydrolysis for preparation and inductively coupled plasma mass spectrometry and ion chromatography for measurement. Analyst 121(11):1627–1631CrossRefGoogle Scholar
  324. Sekimoto S, Ebihara M (2013) Accurate determination of chlorine, bromine, and iodine in sedimentary rock reference samples by radiochemical neutron activation analysis and a detailed comparison with inductively coupled plasma mass spectrometry literature data. Anal Chem 85:6336–6341CrossRefGoogle Scholar
  325. Seo JH, Guillong M, Aerts M, Zajacz Z, Heinrich CA (2011) Microanalysis of S, Cl, and Br in fluid inclusions by LA-ICP-MS. Chem Geol 284:35–44Google Scholar
  326. Sharp ZD, Draper DS (2013) The chlorine abundance of Earth: implications for a habitable Planet. Earth Planet Sci Lett 369–370:71–77CrossRefGoogle Scholar
  327. Sharp ZD, Mercer JA, Jones RH, Brearley AJ, Selverstone J, Bekker A, Stachel T (2013) The chlorine isotope composition of chondrites and Earth. Geochim Cosmochim Acta 107:189–204CrossRefGoogle Scholar
  328. Shaw AM, Behn MD, Humphris SE, Sohn RA, Gregg PM (2010) Deep pooling of low degree melts and volatile fluxes at the 85°E segment of the Gakkel Ridge: evidence from olivine-hosted melt inclusions and glasses. Earth Planet Sci Lett 289:311–322CrossRefGoogle Scholar
  329. Shimizu K, Yamauchi T, Tamitani N, Takeshita N, Ishizuka M, Amaya K, Endo S (1994) The pressure-induced superconductivity of iodine. J Supercond 7(6):921–924CrossRefGoogle Scholar
  330. Shimizu K, Alberto ES, Corinne EM, Ashley NN, Erik HH, Donald WF, Vadim SK, Yaoling N (2016) Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: implications for the volatile content of the Pacific upper mantle. Geochim Cosmochim Acta 176:44–80CrossRefGoogle Scholar
  331. Shinohara H, Iiyama JT, Matsuo S (1989) Partition of chlorine compounds between silicate melt and hydrothermal solutions: I. partition of NaCl-KCl. Geochim Cosmochim Acta 53(10):2617–2630CrossRefGoogle Scholar
  332. Shouakar-Stash O, Frape SK, Drimmie RJ (2005) Determination of bromine stable isotopes using continuous-flow isotope ratio mass spectrometry. Anal Chem 77:4027–4033CrossRefGoogle Scholar
  333. Shouakar-Stash O, Alexeev SV, Frape SK, Alexeeva LP, Drimmie RJ (2007) Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes, of the deep groundwaters of the Siberian Platform, Russia. Appl Geochem 22(3):589–605CrossRefGoogle Scholar
  334. Simpson WR, Brown SS, Saiz-Lopez A, Thornton JA, Glasow RV (2015) Tropospheric Halogen Chemistry: sources, cycling, and impacts. Chem Rev 115:4035–4062CrossRefGoogle Scholar
  335. Smart RP, Soulsby C, Cresser MS, Wade A, Townend J, Billett MF, Langan SJ (2001) Riparian zone influence on stream water chemistry at different spatial scales: a GIS based modelling approach, an example for the Dee, NE Scotland. Sci Total Environ 280:173–193CrossRefGoogle Scholar
  336. Starinsky A (1974) Relationship between Ca-chloride brines and sedimentary rocks in Israel. Doctoral dissertationGoogle Scholar
  337. Stix J, Layne GD, Spell TL (1995) The behavior of light lithophile and halogen elements in felsic magma: geochemistry of the post-caldera Valles Rhyolites, Jemez Mountains Volcanic Field, New Mexico. J Volcanol Gertherm Res 67:61–77CrossRefGoogle Scholar
  338. Straub SM, Layne GD (2003) The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim Cosmochim Acta 67:4179–4203CrossRefGoogle Scholar
  339. Stromer JC, Pierson ML, Tacker RC (1993) Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am Mineral 78:641–648Google Scholar
  340. Stueber AM, Walter LM (1991) Origin and chemical evolution of formation waters from Silurian-Devonian strata in the Illinois basin, USA. Geochim Cosmochim Acta 55(1):309–325CrossRefGoogle Scholar
  341. Stueber AM, Walter LM, Huston TJ, Pushkar P (1993) Formation waters from Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: chemical and isotopic constraints on evolution and migration. Geochim Cosmochim Acta 57(4):763–784CrossRefGoogle Scholar
  342. Sugiura T (1968) Bromine to chlorine ratios in igneous rocks. Bull Chem Soc Jpn 41(5):1133–1139CrossRefGoogle Scholar
  343. Sumino H, Burgess R, Mizukami T, Wallis SR, Holland G, Ballentine CJ (2010) Seawater-derived noble gases and halogens preserved in exhumed mantle wedge peridotite. Earth Planet Sci Lett 294:163–172CrossRefGoogle Scholar
  344. Svensen H, Jamtveit B, Banks DA, Austrheim H (2001a) Halogen contents of eclogite facies fluid inclusions and minerals: Caledonides, Western Norway. J Metamorph Geol 19:165–178CrossRefGoogle Scholar
  345. Svensen H, Jamtveit B, Banks DA, Karlsen D (2001b) Fluids and halogens at the diagenetic-metamorphic boundary: evidence from veins in continental basins, Western Norway. Geofluids 1:53–70CrossRefGoogle Scholar
  346. Swindle TD, Caffee MW, Hohenberg CM, Taylor SR (1986) I-Pu-Xe dating and the relative ages of the earth and moon. In: Hartmann WK, Phillips RJ, Taylor GJ (eds) Origin of the moon. Lunar Planet Institute, Houston, pp 331–357Google Scholar
  347. Swindle TD, Caffee MW, Hohenberg CM, Lindstrom MM, Taylor GJ (1991) Iodine-xenon studies of petrographically and chemically characterized Chainpur chondrules. Geochim Cosmochim Acta 55(3):861–880CrossRefGoogle Scholar
  348. Symonds RB, Rose WI, Bluth GJ, Gerlach TM (1994) Volcanic-gas studies; methods, results, and applications. Rev Mineral Geochem 30(1):1–66Google Scholar
  349. Taylor GJ (2013) The bulk composition of Mars. Chem Erde-Geochem 73:401–420CrossRefGoogle Scholar
  350. Teague AJ, Hanley J, Seward TM, Reutten F (2011) Trace-element distribution between coexisting aqueous fumarole condensates and natrocarbonatite lavas at Oldoinyo Lengai volcano, Tanzania. Geol Soc Am Spec Pap 478:159–172Google Scholar
  351. Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the Earth’s crust. Geol Soc Am Bull 72:175–192CrossRefGoogle Scholar
  352. Unni CK, Schilling JG (1977) Determination of bromine in silicate rocks by epithermal neutron activation analysis. Anal Chem 49:1998–2000 (Washington, D.C.)CrossRefGoogle Scholar
  353. Unni CK, Schilling JG (1978) Cl and Br degassing by volcanism along the Reykjanes Ridge and Iceland. Nature 272:19–23Google Scholar
  354. Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc 562–581. https://doi.org/10.1039/JR9470000562 (London)
  355. Van den Bleeken G, Koga KT (2015) Experimentally determined distribution of fluorine and chlorine upon hydrous slab melting, and implications for F-Cl cycling through subduction zones. Geochim Cosmochim Acta 171:353–373CrossRefGoogle Scholar
  356. Vasyukova O, Williams-Jones AE (2014) Fluoride–silicate melt immiscibility and its role in REE ore formation: evidence from the Strange Lake rare metal deposit, Québec-Labrador, Canada. Geochim Cosmochim Acta 139:110–130Google Scholar
  357. Vasyukova O, Williams-Jones AE (2016) The evolution of immiscible silicate and fluoride melts: implications for REE ore-genesis. Geochim Cosmochim Acta 172:205–224Google Scholar
  358. Veksler IV, Dorfman AM, Kamanetsky M, Dulski P, Dingwell DB (2005) Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochim Cosmochim Acta 69:2847–2860CrossRefGoogle Scholar
  359. Veksler IV, Dorfman AM, Dulski P, Kamenetsky VS, Danyushevksy LV, Jeffries T, Dingwell DB (2012) Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfide melts, with implications to the origin of natrocarbonatite. Geochim Cosmochim Acta 79:20–40CrossRefGoogle Scholar
  360. Vigneresse JL (2009) Evaluation of the chemical reactivity of the fluid phase through hard–soft acid–base concepts in magmatic intrusions with applications to ore generation. Chem Geol 263(1):69–81CrossRefGoogle Scholar
  361. Vinogradov AP (1961) The origin of the material of the Earth’s crust. Communication 1(1):1–52Google Scholar
  362. Volfinger M, Robert JL, Vielzeuf D, Neiva AM (1985) Structural control of the chlorine content of OH-bearing silicates (micas and amphiboles). Geochim Cosmochim Acta 49(1):37–48CrossRefGoogle Scholar
  363. Vovk IF (1987) Radiolytic salt enrichment and brines in the crystalline basement of the East European platform. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geological Association of Canada (Special Paper 33). The Runge, Ottawa, pp 197–210Google Scholar
  364. Wallace P, Anderson AT (2000) Volatiles in magmas. In: Sigurdsson H, Houghton BF, Mcnutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 149–170Google Scholar
  365. Wang X, Li G, Zhang Q, Wang Y (2004) Determination of major, minor and trace elements in seamount phosphorite by XRF spectrometry. Geostand Geoanal Res 28:81–88CrossRefGoogle Scholar
  366. Wänke H, Dreibus G (1988) Chemical composition and accretion history of terrestrial planets. Philos Trans R Soc London Ser A 325:545–557CrossRefGoogle Scholar
  367. Wänke H, Baddenhausen H, Palme H (1974) On the chemistry of the Allende inclusions and their origin as high temperature condensates. Earth Planet Sci Lett 23:1–7CrossRefGoogle Scholar
  368. Wanless VD, Shaw AM (2012) Lower crustal crystallization and melt evolution at mid-ocean ridges. Nat Geosci 5:651–655CrossRefGoogle Scholar
  369. Wasson JT, Kallemeyn GW (1988) Compositions of chondrites. Philos Trans R Soc A: Math Phys Eng Sci 325:535–544CrossRefGoogle Scholar
  370. Webster JD, Holloway JR (1990) Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas. Geol Soc Am Spec Pap 246:21–34Google Scholar
  371. Webster JD, Holloway JR, Hervig RL (1989) Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt. Econ Geol 84(1):116–134CrossRefGoogle Scholar
  372. Webster JD, Tappen CM, Mandeville CW (2009) Partitioning behavior of chlorine and fluorine in the system apatite–melt–fluid. II: Felsic silicate systems at 200 MPa. Geochim Cosmochim Acta 73(3):559–581CrossRefGoogle Scholar
  373. Webster JD, Baker DR, Aiuppa A (2018) Halogens in mafic and intermediate-silica content magmas. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geochemical processes: surface, crust, and mantle. Springer, Berlin, pp 307–430Google Scholar
  374. Wedepohl KH (1987) The chlorine and sulfur crustal cycle–abundance of evaporites. Geochemistry and mineral formation in the Earth surface, p 3–27Google Scholar
  375. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1239CrossRefGoogle Scholar
  376. Wedepohl KH, Hartmann G (1994) The composition of the primitive upper Earth’s mantle. In: Meyer HOA, Leonardos OH (eds) Kimberlites, related rocks and mantle xenoliths. Companhia de Pesquisa de Recursos Minerais, Rio de Janeiro, 1, pp 486–495Google Scholar
  377. Whitfield M, Turner DR (1972) Water–rock partition coefficients and the composition of seawater and river water. Nature 278:132–137CrossRefGoogle Scholar
  378. Wilson TRS (1975) Salinity and the major elements of seawater. In: Riley JP, Skirrow G (eds) Chemical oceanography. Academic, New York, pp 365–413Google Scholar
  379. Wilson TP, Long DT (1993a) Geochemistry and isotope chemistry of Michigan Basin brines: Devonian formations. Appl Geochem 8(1):81–100CrossRefGoogle Scholar
  380. Wilson TP, Long DT (1993b) Geochemistry and isotope chemistry of Ca Na Cl brines in Silurian strata, Michigan Basin, USA. Appl Geochem 8(1):81–100CrossRefGoogle Scholar
  381. Witter JB, Kuehner SM (2004) A simple empirical method for high-quality electron microprobe analysis of fluorine at trace levels in Fe-bearing minerals and glasses. Am Mineral 89:57–63Google Scholar
  382. Wong GTF, Brewer PG (1974) The determination and distribution of iodate in South Atlantic waters. J Mar Res 32(1):25–36Google Scholar
  383. Woosley SE, Haxton WC (1988) Supernova neutrinos, neutral currents and the origin of fluorine. Nature 334:45–47CrossRefGoogle Scholar
  384. Worden RH (1996) Controls on halogen concentrations in sedimentary formation waters. Mineral Mag 60(399):259–274CrossRefGoogle Scholar
  385. Worden RH (2018) Halogen elements in sedimentary systems and their evolution during diagenesis. In: Harlov DE, Aranovich L (eds) The role of halogens in terrestrial and extraterrestrial geo-chemical processes: surface, crust, and mantle. Springer, Berlin, pp 185–260CrossRefGoogle Scholar
  386. Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72CrossRefGoogle Scholar
  387. Workman RK, Hart SR, Jackson MG, Regelous M, Farley KA, Blusztajn J, Kurz MD, Staudigel H (2004) Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: evidence from the Samoan Volcanic Chain. Geochem Geophys Geosys 5:Q04008CrossRefGoogle Scholar
  388. Workman RK, Hauri EH, Hart SR, Wang J, Blusztajn J (2006) Volatile and trace elements in basaltic glasses from Samoa: implications for water distribution in the mantle. Earth Planet Sci Lett 241:932–951CrossRefGoogle Scholar
  389. Wu J, Koga KT (2013) Fluorine partitioning between hydrous minerals and aqueous fluid at GPa and 770–947 °C: a new constraint on slab flux. Geochim Cosmochim Acta 119:77–92CrossRefGoogle Scholar
  390. Wyllie PJ, Tuttle OF (1964) Experimental investigation of silicate systems containing two volatile components. Part III. The effects of SO3, P2O5, HCl, and Li2O, in addition to H2O, on the melting temperatures of albite and granite. Am J Sci 262:930–939CrossRefGoogle Scholar
  391. Xiao YK, Zhang CG (1992) High precision isotopic measurements of chlorine by thermal ionization mass spectrometry of the Cs2Cl+ ion. Int J Mass Spectrom Ion Process 116:183–192CrossRefGoogle Scholar
  392. Yardley BW (2005) 100th anniversary special paper: metal concentrations in crustal fluids and their relationship to ore formation. Econ Geol 100(4):613–632CrossRefGoogle Scholar
  393. Yardley BW (2009) The role of water in crustal evolution. J Geol Soc London 166:613–632CrossRefGoogle Scholar
  394. Yardley BW (2013) The chemical composition of metamorphic fluids in the crust. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Springer, Berlin, pp 17–51CrossRefGoogle Scholar
  395. Yardley BW, Bodnar RJ (2014) Fluids in the continental crust. Geochem Perspect 3(1):127CrossRefGoogle Scholar
  396. Yardley BW, Graham JT (2002) Origins of salinity in metamorphic fluids. Geofluids 2:249–256CrossRefGoogle Scholar
  397. Yardley BW, Banks DA, Bottrell SH, Diamond LW (1993) Post-metamorphic gold-quartz veins from NW Italy: the composition and origin of the ore fluid. Mineral Mag 57:407CrossRefGoogle Scholar
  398. Yardley BW, Banks DA, Barnicoat AC (2000) The chemistry of crustal brines: tracking their origins. In: Porter TM (ed) Hydrothermal iron oxide coper gold and related deposits: a global perspective. Australian Mineral Foundation, Adelaide, pp 61–70Google Scholar
  399. Yuita K (1984) Iodine, bromine and chlorine content of soils and plants of Japan, 2: Iodine, bromine and chlorine content of the andosols and plants of central Honshu [Japan]. Jpn J Soil Sci Plant Nutr, JapanGoogle Scholar
  400. Zeng Q, Stebbins JF (2000) Fluoride sites in aluminosilicate glasses: high-resolution 19F NMR results. Am Mineral 85(5–6):863–867CrossRefGoogle Scholar
  401. Zherebtsova IK, Volkova NN (1966) Experimental study of the behavior of trace elements in the process of natural solar evaporation of Black Sea water and Sasyk-Sivash brine. Geochem Int 3:656–670Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Mineral Exploration Laboratory, Department of GeologySaint Mary’s UniversityHalifaxCanada
  2. 2.Laboratoire Magmas et VolcansUniversité Clermont AuvergneAUBIERE CedexFrance

Personalised recommendations